

JupyterHub

JupyterHub [https://github.com/jupyterhub/jupyterhub] is the best way to serve Jupyter notebook [https://jupyter-notebook.readthedocs.io/en/latest/] for multiple users.
It can be used in a class of students, a corporate data science group or scientific
research group. It is a multi-user Hub that spawns, manages, and proxies multiple
instances of the single-user Jupyter notebook [https://jupyter-notebook.readthedocs.io/en/latest/] server.

To make life easier, JupyterHub has distributions. Be sure to
take a look at them before continuing with the configuration of the broad
original system of JupyterHub [https://github.com/jupyterhub/jupyterhub]. Today, you can find two main cases:

	If you need a simple case for a small amount of users (0-100) and single server
take a look at
The Littlest JupyterHub [https://github.com/jupyterhub/the-littlest-jupyterhub] distribution.

	If you need to allow for even more users, a dynamic amount of servers can be used on a cloud,
take a look at the Zero to JupyterHub with Kubernetes [https://github.com/jupyterhub/zero-to-jupyterhub-k8s] .

Four subsystems make up JupyterHub:

	a Hub (tornado process) that is the heart of JupyterHub

	a configurable http proxy (node-http-proxy) that receives the requests from the client’s browser

	multiple single-user Jupyter notebook servers (Python/IPython/tornado) that are monitored by Spawners

	an authentication class that manages how users can access the system

Besides these central pieces, you can add optional configurations through a config.py file and manage users kernels on an admin panel. A simplification of the whole system can be seen in the figure below:

[image: JupyterHub subsystems]
JupyterHub performs the following functions:

	The Hub launches a proxy

	The proxy forwards all requests to the Hub by default

	The Hub handles user login and spawns single-user servers on demand

	The Hub configures the proxy to forward URL prefixes to the single-user
notebook servers

For convenient administration of the Hub, its users, and services,
JupyterHub also provides a REST API.

The JupyterHub team and Project Jupyter value our community, and JupyterHub
follows the Jupyter Community Guides [https://jupyter.readthedocs.io/en/latest/community/content-community.html].

Contents

Distributions

A JupyterHub distribution is tailored towards a particular set of
use cases. These are generally easier to set up than setting up
JupyterHub from scratch, assuming they fit your use case.

The two popular ones are:

	Zero to JupyterHub on Kubernetes [http://z2jh.jupyter.org], for
running JupyterHub on top of Kubernetes [https://k8s.io]. This
can scale to large number of machines & users.

	The Littlest JupyterHub [http://tljh.jupyter.org], for an easy
to set up & run JupyterHub supporting 1-100 users on a single machine.

Installation Guide

	Installation
	Quickstart

	Using Docker

	Installation Basics

Getting Started

	Get Started
	Configuration Basics

	Networking basics

	Security settings

	Authentication and User Basics

	Spawners and single-user notebook servers

	External services

	Frequently asked questions

	Institutional FAQ

Technical Reference

	Technical Reference
	Technical Overview

	JupyterHub URL scheme

	Security Overview

	Authenticators

	Spawners

	Services

	Writing a custom Proxy implementation

	Running proxy separately from the hub

	Using JupyterHub’s REST API

	JupyterHub REST API

	Starting servers with the JupyterHub API

	Monitoring

	The Hub’s Database

	Working with templates and UI

	Deploying JupyterHub in “API only mode”

	Eventlogging and Telemetry

	Configuring user environments

	Configuration examples

	Configure GitHub OAuth

	Using a reverse proxy

	Run JupyterHub without root privileges using sudo

	Configuration Reference

	JupyterHub and OAuth

Administrators guide

	Administrator’s Guide
	Troubleshooting

	Upgrading JupyterHub

	Changelog

API Reference

	JupyterHub API
	Application configuration

	Authenticators

	Spawners

	Proxies

	Users

	Services

	Services Authentication

RBAC Reference

	JupyterHub RBAC
	Motivation

	Definitions

	Technical Overview

Contributing

We want you to contribute to JupyterHub in ways that are most exciting
& useful to you. We value documentation, testing, bug reporting & code equally,
and are glad to have your contributions in whatever form you wish :)

Our Code of Conduct [https://github.com/jupyter/governance/blob/HEAD/conduct/code_of_conduct.md]
(reporting guidelines [https://github.com/jupyter/governance/blob/HEAD/conduct/reporting_online.md])
helps keep our community welcoming to as many people as possible.

	Contributing
	Community communication channels

	Setting up a development install

	Contributing Documentation

	Testing JupyterHub

	The JupyterHub roadmap

	Reporting security issues in Jupyter or JupyterHub

About JupyterHub

	About
	Contributors

	Changelog

	A Gallery of JupyterHub Deployments

Indices and tables

	Index

	Module Index

Questions? Suggestions?

	Jupyter mailing list [https://groups.google.com/forum/#!forum/jupyter]

	Jupyter website [https://jupyter.org]

Installation

These sections cover how to get up-and-running with JupyterHub. They cover
some basics of the tools needed to deploy JupyterHub as well as how to get it
running on your own infrastructure.

	Quickstart
	Prerequisites

	Installation

	Start the Hub server

	Using Docker
	Alternate installation using Docker

	Starting JupyterHub with docker

	Installation Basics
	Platform support

	Planning your installation

	Folders and File Locations

Quickstart

Prerequisites

Before installing JupyterHub, you will need:

	a Linux/Unix based system

	Python [https://www.python.org/downloads/] 3.6 or greater. An understanding
of using pip [https://pip.pypa.io] or
conda [https://conda.io/docs/get-started.html] for
installing Python packages is helpful.

	nodejs/npm [https://www.npmjs.com/]. Install nodejs/npm [https://docs.npmjs.com/getting-started/installing-node],
using your operating system’s package manager.

	If you are using conda, the nodejs and npm dependencies will be installed for
you by conda.

	If you are using pip, install a recent version of
nodejs/npm [https://docs.npmjs.com/getting-started/installing-node].
For example, install it on Linux (Debian/Ubuntu) using:

sudo apt-get install nodejs npm

nodesource [https://github.com/nodesource/distributions#table-of-contents] is a great resource to get more recent versions of the nodejs runtime,
if your system package manager only has an old version of Node.js (e.g. 10 or older).

	A pluggable authentication module (PAM) [https://en.wikipedia.org/wiki/Pluggable_authentication_module]
to use the default Authenticator.
PAM is often available by default on most distributions, if this is not the case it can be installed by
using the operating system’s package manager.

	TLS certificate and key for HTTPS communication

	Domain name

Before running the single-user notebook servers (which may be on the same
system as the Hub or not), you will need:

	JupyterLab [https://jupyterlab.readthedocs.io] version 3 or greater,
or Jupyter Notebook [https://jupyter.readthedocs.io/en/latest/install.html]
4 or greater.

Installation

JupyterHub can be installed with pip (and the proxy with npm) or conda:

pip, npm:

python3 -m pip install jupyterhub
npm install -g configurable-http-proxy
python3 -m pip install jupyterlab notebook # needed if running the notebook servers in the same environment

conda (one command installs jupyterhub and proxy):

conda install -c conda-forge jupyterhub # installs jupyterhub and proxy
conda install jupyterlab notebook # needed if running the notebook servers in the same environment

Test your installation. If installed, these commands should return the packages’
help contents:

jupyterhub -h
configurable-http-proxy -h

Start the Hub server

To start the Hub server, run the command:

jupyterhub

Visit http://localhost:8000 in your browser, and sign in with your unix
credentials.

To allow multiple users to sign in to the Hub server, you must start
jupyterhub as a privileged user, such as root:

sudo jupyterhub

The wiki [https://github.com/jupyterhub/jupyterhub/wiki/Using-sudo-to-run-JupyterHub-without-root-privileges]
describes how to run the server as a less privileged user. This requires
additional configuration of the system.

Using Docker

Important

We highly recommend following the Zero to JupyterHub [https://zero-to-jupyterhub.readthedocs.io/en/latest/] tutorial for
installing JupyterHub.

Alternate installation using Docker

A ready to go docker image [https://hub.docker.com/r/jupyterhub/jupyterhub/]
gives a straightforward deployment of JupyterHub.

Note

This jupyterhub/jupyterhub docker image is only an image for running
the Hub service itself. It does not provide the other Jupyter components,
such as Notebook installation, which are needed by the single-user servers.
To run the single-user servers, which may be on the same system as the Hub or
not, Jupyter Notebook version 4 or greater must be installed.

Starting JupyterHub with docker

The JupyterHub docker image can be started with the following command:

docker run -d -p 8000:8000 --name jupyterhub jupyterhub/jupyterhub jupyterhub

This command will create a container named jupyterhub that you can
stop and resume with docker stop/start.

The Hub service will be listening on all interfaces at port 8000, which makes
this a good choice for testing JupyterHub on your desktop or laptop.

If you want to run docker on a computer that has a public IP then you should
(as in MUST) secure it with ssl by adding ssl options to your docker
configuration or using a ssl enabled proxy.

Mounting volumes [https://docs.docker.com/engine/admin/volumes/volumes/]
will allow you to store data outside the docker image (host system) so it will
be persistent, even when you start a new image.

The command docker exec -it jupyterhub bash will spawn a root shell in your
docker container. You can use the root shell to create system users in the container.
These accounts will be used for authentication in JupyterHub’s default
configuration.

Installation Basics

Platform support

JupyterHub is supported on Linux/Unix based systems. To use JupyterHub, you need
a Unix server (typically Linux) running somewhere that is accessible to your
team on the network. The JupyterHub server can be on an internal network at your
organization, or it can run on the public internet (in which case, take care
with the Hub’s security).

JupyterHub officially does not support Windows. You may be able to use
JupyterHub on Windows if you use a Spawner and Authenticator that work on
Windows, but the JupyterHub defaults will not. Bugs reported on Windows will not
be accepted, and the test suite will not run on Windows. Small patches that fix
minor Windows compatibility issues (such as basic installation) may be accepted,
however. For Windows-based systems, we would recommend running JupyterHub in a
docker container or Linux VM.

Additional Reference: [http://www.tornadoweb.org/en/stable/#installation]
Tornado’s documentation on Windows platform support

Planning your installation

Prior to beginning installation, it’s helpful to consider some of the following:

	deployment system (bare metal, Docker)

	Authentication (PAM, OAuth, etc.)

	Spawner of singleuser notebook servers (Docker, Batch, etc.)

	Services (nbgrader, etc.)

	JupyterHub database (default SQLite; traditional RDBMS such as PostgreSQL,)
MySQL, or other databases supported by SQLAlchemy [http://www.sqlalchemy.org])

Folders and File Locations

It is recommended to put all of the files used by JupyterHub into standard
UNIX filesystem locations.

	/srv/jupyterhub for all security and runtime files

	/etc/jupyterhub for all configuration files

	/var/log for log files

Get Started

This section covers how to configure and customize JupyterHub for your
needs. It contains information about authentication, networking, security, and
other topics that are relevant to individuals or organizations deploying their
own JupyterHub.

	Configuration Basics
	Generate a default config file

	Start with a specific config file

	Configure using command line options

	Configure for various deployment environments

	Run the proxy separately

	Networking basics
	Set the Proxy’s IP address and port

	Set the Proxy’s REST API communication URL (optional)

	Configure the Hub if the Proxy or Spawners are remote or isolated

	Adjusting the hub’s URL

	Security settings
	Enabling SSL encryption

	Proxy authentication token

	Cookie secret

	Cookies used by JupyterHub authentication

	Authentication and User Basics
	Create a set of allowed users

	Configure admins (admin_users)

	Give admin access to other users’ notebook servers (admin_access)

	Add or remove users from the Hub

	Use LocalAuthenticator to create system users

	Use OAuthenticator to support OAuth with popular service providers

	Use DummyAuthenticator for testing

	Spawners and single-user notebook servers

	External services
	Real-world example to cull idle servers

	API Token basics

	Authenticating to single-user servers using API token

	Configure the idle culler to run as a Hub-Managed Service

	Run cull-idle manually as a standalone script

	Frequently asked questions
	How do I share links to notebooks?

	Institutional FAQ
	For all

	For management

	For IT

	For Technical Leads

Configuration Basics

The section contains basic information about configuring settings for a JupyterHub
deployment. The Technical Reference
documentation provides additional details.

This section will help you learn how to:

	generate a default configuration file, jupyterhub_config.py

	start with a specific configuration file

	configure JupyterHub using command line options

	find information and examples for some common deployments

Generate a default config file

On startup, JupyterHub will look by default for a configuration file,
jupyterhub_config.py, in the current working directory.

To generate a default config file, jupyterhub_config.py:

jupyterhub --generate-config

This default jupyterhub_config.py file contains comments and guidance for all
configuration variables and their default values. We recommend storing
configuration files in the standard UNIX filesystem location, i.e.
/etc/jupyterhub.

Start with a specific config file

You can load a specific config file and start JupyterHub using:

jupyterhub -f /path/to/jupyterhub_config.py

If you have stored your configuration file in the recommended UNIX filesystem
location, /etc/jupyterhub, the following command will start JupyterHub using
the configuration file:

jupyterhub -f /etc/jupyterhub/jupyterhub_config.py

The IPython documentation provides additional information on the
config system [http://ipython.readthedocs.io/en/stable/development/config.html]
that Jupyter uses.

Configure using command line options

To display all command line options that are available for configuration:

 jupyterhub --help-all

Configuration using the command line options is done when launching JupyterHub.
For example, to start JupyterHub on 10.0.1.2:443 with https, you
would enter:

 jupyterhub --ip 10.0.1.2 --port 443 --ssl-key my_ssl.key --ssl-cert my_ssl.cert

All configurable options may technically be set on the command line,
though some are inconvenient to type. To set a particular configuration
parameter, c.Class.trait, you would use the command line option,
--Class.trait, when starting JupyterHub. For example, to configure the
c.Spawner.notebook_dir trait from the command line, use the
--Spawner.notebook_dir option:

jupyterhub --Spawner.notebook_dir='~/assignments'

Configure for various deployment environments

The default authentication and process spawning mechanisms can be replaced, and
specific authenticators and
spawners can be set in the configuration file.
This enables JupyterHub to be used with a variety of authentication methods or
process control and deployment environments. Some examples,
meant as illustration, are:

	Using GitHub OAuth instead of PAM with OAuthenticator [https://github.com/jupyterhub/oauthenticator]

	Spawning single-user servers with Docker, using the DockerSpawner [https://github.com/jupyterhub/dockerspawner]

Run the proxy separately

This is not strictly necessary, but useful in many cases. If you
use a custom proxy (e.g. Traefik), this is also not needed.

Connections to user servers go through the proxy, and not the hub
itself. If the proxy stays running when the hub restarts (for
maintenance, re-configuration, etc.), then user connections are not
interrupted. For simplicity, by default the hub starts the proxy
automatically, so if the hub restarts, the proxy restarts, and user
connections are interrupted. It is easy to run the proxy separately,
for information see the separate proxy page.

Networking basics

This section will help you with basic proxy and network configuration to:

	set the proxy’s IP address and port

	set the proxy’s REST API URL

	configure the Hub if the Proxy or Spawners are remote or isolated

	set the hub_connect_ip which services will use to communicate with the hub

Set the Proxy’s IP address and port

The Proxy’s main IP address setting determines where JupyterHub is available to users.
By default, JupyterHub is configured to be available on all network interfaces
('') on port 8000. Note: Use of '*' is discouraged for IP configuration;
instead, use of '0.0.0.0' is preferred.

Changing the Proxy’s main IP address and port can be done with the following
JupyterHub command line options:

jupyterhub --ip=192.168.1.2 --port=443

Or by placing the following lines in a configuration file,
jupyterhub_config.py:

c.JupyterHub.ip = '192.168.1.2'
c.JupyterHub.port = 443

Port 443 is used in the examples since 443 is the default port for SSL/HTTPS.

Configuring only the main IP and port of JupyterHub should be sufficient for
most deployments of JupyterHub. However, more customized scenarios may need
additional networking details to be configured.

Note that c.JupyterHub.ip and c.JupyterHub.port are single values,
not tuples or lists – JupyterHub listens to only a single IP address and
port.

Set the Proxy’s REST API communication URL (optional)

By default, this REST API listens on port 8001 of localhost only.
The Hub service talks to the proxy via a REST API on a secondary port. The
API URL can be configured separately to override the default settings.

Set api_url

The URL to access the API, c.configurableHTTPProxy.api_url, is configurable.
An example entry to set the proxy’s API URL in jupyterhub_config.py is:

c.ConfigurableHTTPProxy.api_url = 'http://10.0.1.4:5432'

proxy_api_ip and proxy_api_port (Deprecated in 0.8)

If running the Proxy separate from the Hub, configure the REST API communication
IP address and port by adding this to the jupyterhub_config.py file:

ideally a private network address
c.JupyterHub.proxy_api_ip = '10.0.1.4'
c.JupyterHub.proxy_api_port = 5432

We recommend using the proxy’s api_url setting instead of the deprecated
settings, proxy_api_ip and proxy_api_port.

Configure the Hub if the Proxy or Spawners are remote or isolated

The Hub service listens only on localhost (port 8081) by default.
The Hub needs to be accessible from both the proxy and all Spawners.
When spawning local servers, an IP address setting of localhost is fine.

If either the Proxy or (more likely) the Spawners will be remote or
isolated in containers, the Hub must listen on an IP that is accessible.

c.JupyterHub.hub_ip = '10.0.1.4'
c.JupyterHub.hub_port = 54321

Added in 0.8: The c.JupyterHub.hub_connect_ip setting is the IP address or
hostname that other services should use to connect to the Hub. A common
configuration for, e.g. docker, is:

c.JupyterHub.hub_ip = '0.0.0.0' # listen on all interfaces
c.JupyterHub.hub_connect_ip = '10.0.1.4' # IP as seen on the docker network. Can also be a hostname.

Adjusting the hub’s URL

The hub will most commonly be running on a hostname of its own. If it
is not – for example, if the hub is being reverse-proxied and being
exposed at a URL such as https://proxy.example.org/jupyter/ – then
you will need to tell JupyterHub the base URL of the service. In such
a case, it is both necessary and sufficient to set
c.JupyterHub.base_url = '/jupyter/' in the configuration.

Security settings

Important

You should not run JupyterHub without SSL encryption on a public network.

Security is the most important aspect of configuring Jupyter. Three
configuration settings are the main aspects of security configuration:

	SSL encryption (to enable HTTPS)

	Cookie secret (a key for encrypting browser cookies)

	Proxy authentication token (used for the Hub and
other services to authenticate to the Proxy)

The Hub hashes all secrets (e.g., auth tokens) before storing them in its
database. A loss of control over read-access to the database should have
minimal impact on your deployment; if your database has been compromised, it
is still a good idea to revoke existing tokens.

Enabling SSL encryption

Since JupyterHub includes authentication and allows arbitrary code execution,
you should not run it without SSL (HTTPS).

Using an SSL certificate

This will require you to obtain an official, trusted SSL certificate or create a
self-signed certificate. Once you have obtained and installed a key and
certificate you need to specify their locations in the jupyterhub_config.py
configuration file as follows:

c.JupyterHub.ssl_key = '/path/to/my.key'
c.JupyterHub.ssl_cert = '/path/to/my.cert'

Some cert files also contain the key, in which case only the cert is needed. It
is important that these files be put in a secure location on your server, where
they are not readable by regular users.

If you are using a chain certificate, see also chained certificate for SSL
in the JupyterHub Troubleshooting FAQ.

Using letsencrypt

It is also possible to use letsencrypt [https://letsencrypt.org/] to obtain
a free, trusted SSL certificate. If you run letsencrypt using the default
options, the needed configuration is (replace mydomain.tld by your fully
qualified domain name):

c.JupyterHub.ssl_key = '/etc/letsencrypt/live/{mydomain.tld}/privkey.pem'
c.JupyterHub.ssl_cert = '/etc/letsencrypt/live/{mydomain.tld}/fullchain.pem'

If the fully qualified domain name (FQDN) is example.com, the following
would be the needed configuration:

c.JupyterHub.ssl_key = '/etc/letsencrypt/live/example.com/privkey.pem'
c.JupyterHub.ssl_cert = '/etc/letsencrypt/live/example.com/fullchain.pem'

If SSL termination happens outside of the Hub

In certain cases, for example if the hub is running behind a reverse proxy, and
SSL termination is being provided by NGINX [https://www.nginx.com/resources/admin-guide/nginx-ssl-termination/],
it is reasonable to run the hub without SSL.

To achieve this, simply omit the configuration settings
c.JupyterHub.ssl_key and c.JupyterHub.ssl_cert
(setting them to None does not have the same effect, and is an error).

Proxy authentication token

The Hub authenticates its requests to the Proxy using a secret token that
the Hub and Proxy agree upon. Note that this applies to the default
ConfigurableHTTPProxy implementation. Not all proxy implementations
use an auth token.

The value of this token should be a random string (for example, generated by
openssl rand -hex 32). You can store it in the configuration file or an
environment variable

Generating and storing token in the configuration file

You can set the value in the configuration file, jupyterhub_config.py:

c.ConfigurableHTTPProxy.api_token = 'abc123...' # any random string

Generating and storing as an environment variable

You can pass this value of the proxy authentication token to the Hub and Proxy
using the CONFIGPROXY_AUTH_TOKEN environment variable:

export CONFIGPROXY_AUTH_TOKEN=$(openssl rand -hex 32)

This environment variable needs to be visible to the Hub and Proxy.

Default if token is not set

If you don’t set the Proxy authentication token, the Hub will generate a random
key itself, which means that any time you restart the Hub you must also
restart the Proxy. If the proxy is a subprocess of the Hub, this should happen
automatically (this is the default configuration).

Cookie secret

The cookie secret is an encryption key, used to encrypt the browser cookies
which are used for authentication. Three common methods are described for
generating and configuring the cookie secret.

Generating and storing as a cookie secret file

The cookie secret should be 32 random bytes, encoded as hex, and is typically
stored in a jupyterhub_cookie_secret file. An example command to generate the
jupyterhub_cookie_secret file is:

openssl rand -hex 32 > /srv/jupyterhub/jupyterhub_cookie_secret

In most deployments of JupyterHub, you should point this to a secure location on
the file system, such as /srv/jupyterhub/jupyterhub_cookie_secret.

The location of the jupyterhub_cookie_secret file can be specified in the
jupyterhub_config.py file as follows:

c.JupyterHub.cookie_secret_file = '/srv/jupyterhub/jupyterhub_cookie_secret'

If the cookie secret file doesn’t exist when the Hub starts, a new cookie
secret is generated and stored in the file. The file must not be readable by
group or other or the server won’t start. The recommended permissions
for the cookie secret file are 600 (owner-only rw).

Generating and storing as an environment variable

If you would like to avoid the need for files, the value can be loaded in the
Hub process from the JPY_COOKIE_SECRET environment variable, which is a
hex-encoded string. You can set it this way:

export JPY_COOKIE_SECRET=$(openssl rand -hex 32)

For security reasons, this environment variable should only be visible to the
Hub. If you set it dynamically as above, all users will be logged out each time
the Hub starts.

Generating and storing as a binary string

You can also set the cookie secret in the configuration file
itself, jupyterhub_config.py, as a binary string:

c.JupyterHub.cookie_secret = bytes.fromhex('64 CHAR HEX STRING')

Important

If the cookie secret value changes for the Hub, all single-user notebook
servers must also be restarted.

Cookies used by JupyterHub authentication

The following cookies are used by the Hub for handling user authentication.

This section was created based on this post [https://discourse.jupyter.org/t/how-to-force-re-login-for-users/1998/6] from Discourse.

jupyterhub-hub-login

This is the login token used when visiting Hub-served pages that are
protected by authentication such as the main home, the spawn form, etc.
If this cookie is set, then the user is logged in.

Resetting the Hub cookie secret effectively revokes this cookie.

This cookie is restricted to the path /hub/.

jupyterhub-user-<username>

This is the cookie used for authenticating with a single-user server.
It is set by the single-user server after OAuth with the Hub.

Effectively the same as jupyterhub-hub-login, but for the
single-user server instead of the Hub. It contains an OAuth access token,
which is checked with the Hub to authenticate the browser.

Each OAuth access token is associated with a session id (see jupyterhub-session-id section
below).

To avoid hitting the Hub on every request, the authentication response
is cached. And to avoid a stale cache the cache key is comprised of both
the token and session id.

Resetting the Hub cookie secret effectively revokes this cookie.

This cookie is restricted to the path /user/<username>, so that
only the user’s server receives it.

jupyterhub-session-id

This is a random string, meaningless in itself, and the only cookie
shared by the Hub and single-user servers.

Its sole purpose is to coordinate logout of the multiple OAuth cookies.

This cookie is set to / so all endpoints can receive it, or clear it, etc.

jupyterhub-user-<username>-oauth-state

A short-lived cookie, used solely to store and validate OAuth state.
It is only set while OAuth between the single-user server and the Hub
is processing.

If you use your browser development tools, you should see this cookie
for a very brief moment before your are logged in,
with an expiration date shorter than jupyterhub-hub-login or
jupyterhub-user-<username>.

This cookie should not exist after you have successfully logged in.

This cookie is restricted to the path /user/<username>, so that only
the user’s server receives it.

Authentication and User Basics

The default Authenticator uses PAM [https://en.wikipedia.org/wiki/Pluggable_authentication_module] to authenticate system users with
their username and password. With the default Authenticator, any user
with an account and password on the system will be allowed to login.

Create a set of allowed users

You can restrict which users are allowed to login with a set,
Authenticator.allowed_users:

c.Authenticator.allowed_users = {'mal', 'zoe', 'inara', 'kaylee'}

Users in the allowed_users set are added to the Hub database when the Hub is
started.

Configure admins (admin_users)

Note

As of JupyterHub 2.0, the full permissions of admin_users
should not be required.
Instead, you can assign [roles][] to users or groups
with only the scopes they require.

Admin users of JupyterHub, admin_users, can add and remove users from
the user allowed_users set. admin_users can take actions on other users’
behalf, such as stopping and restarting their servers.

A set of initial admin users, admin_users can be configured as follows:

c.Authenticator.admin_users = {'mal', 'zoe'}

Users in the admin set are automatically added to the user allowed_users set,
if they are not already present.

Each authenticator may have different ways of determining whether a user is an
administrator. By default JupyterHub uses the PAMAuthenticator which provides the
admin_groups option and can set administrator status based on a user
group. For example we can let any user in the wheel group be admin:

c.PAMAuthenticator.admin_groups = {'wheel'}

Give admin access to other users’ notebook servers (admin_access)

Since the default JupyterHub.admin_access setting is False, the admins
do not have permission to log in to the single user notebook servers
owned by other users. If JupyterHub.admin_access is set to True,
then admins have permission to log in as other users on their
respective machines, for debugging. As a courtesy, you should make
sure your users know if admin_access is enabled.

Add or remove users from the Hub

Users can be added to and removed from the Hub via either the admin
panel or the REST API. When a user is added, the user will be
automatically added to the allowed_users set and database. Restarting the Hub
will not require manually updating the allowed_users set in your config file,
as the users will be loaded from the database.

After starting the Hub once, it is not sufficient to remove a user
from the allowed users set in your config file. You must also remove the user
from the Hub’s database, either by deleting the user from JupyterHub’s
admin page, or you can clear the jupyterhub.sqlite database and start
fresh.

Use LocalAuthenticator to create system users

The LocalAuthenticator is a special kind of authenticator that has
the ability to manage users on the local system. When you try to add a
new user to the Hub, a LocalAuthenticator will check if the user
already exists. If you set the configuration value, create_system_users,
to True in the configuration file, the LocalAuthenticator has
the privileges to add users to the system. The setting in the config
file is:

c.LocalAuthenticator.create_system_users = True

Adding a user to the Hub that doesn’t already exist on the system will
result in the Hub creating that user via the system adduser command
line tool. This option is typically used on hosted deployments of
JupyterHub, to avoid the need to manually create all your users before
launching the service. This approach is not recommended when running
JupyterHub in situations where JupyterHub users map directly onto the
system’s UNIX users.

Use OAuthenticator to support OAuth with popular service providers

JupyterHub’s OAuthenticator [https://github.com/jupyterhub/oauthenticator] currently supports the following
popular services:

	Auth0

	Azure AD

	Bitbucket

	CILogon

	GitHub

	GitLab

	Globus

	Google

	MediaWiki

	Okpy

	OpenShift

A generic implementation, which you can use for OAuth authentication
with any provider, is also available.

Use DummyAuthenticator for testing

The DummyAuthenticator is a simple authenticator that
allows for any username/password unless a global password has been set. If
set, it will allow for any username as long as the correct password is provided.
To set a global password, add this to the config file:

c.DummyAuthenticator.password = "some_password"

Spawners and single-user notebook servers

Since the single-user server is an instance of jupyter notebook, an entire separate
multi-process application, there are many aspects of that server that can be configured, and a lot
of ways to express that configuration.

At the JupyterHub level, you can set some values on the Spawner. The simplest of these is
Spawner.notebook_dir, which lets you set the root directory for a user’s server. This root
notebook directory is the highest level directory users will be able to access in the notebook
dashboard. In this example, the root notebook directory is set to ~/notebooks, where ~ is
expanded to the user’s home directory.

c.Spawner.notebook_dir = '~/notebooks'

You can also specify extra command line arguments to the notebook server with:

c.Spawner.args = ['--debug', '--profile=PHYS131']

This could be used to set the users default page for the single user server:

c.Spawner.args = ['--NotebookApp.default_url=/notebooks/Welcome.ipynb']

Since the single-user server extends the notebook server application,
it still loads configuration from the jupyter_notebook_config.py config file.
Each user may have one of these files in $HOME/.jupyter/.
Jupyter also supports loading system-wide config files from /etc/jupyter/,
which is the place to put configuration that you want to affect all of your users.

External services

When working with JupyterHub, a Service is defined as a process
that interacts with the Hub’s REST API. A Service may perform a specific
action or task. For example, shutting down individuals’ single user
notebook servers that have been idle for some time is a good example of
a task that could be automated by a Service. Let’s look at how the
jupyterhub_idle_culler [https://github.com/jupyterhub/jupyterhub-idle-culler] script can be used as a Service.

Real-world example to cull idle servers

JupyterHub has a REST API that can be used by external services. This
document will:

	explain some basic information about API tokens

	clarify that API tokens can be used to authenticate to
single-user servers as of version 0.8.0

	show how the jupyterhub_idle_culler [https://github.com/jupyterhub/jupyterhub-idle-culler] script can be:

	used in a Hub-managed service

	run as a standalone script

Both examples for jupyterhub_idle_culler will communicate tasks to the
Hub via the REST API.

API Token basics

Create an API token

To run such an external service, an API token must be created and
provided to the service.

As of version 0.6.0, the preferred way of doing
this is to first generate an API token:

openssl rand -hex 32

In version 0.8.0, a TOKEN request page for
generating an API token is available from the JupyterHub user interface:

[image: Request API TOKEN page]

[image: API TOKEN success page]

Pass environment variable with token to the Hub

In the case of cull_idle_servers, it is passed as the environment
variable called JUPYTERHUB_API_TOKEN.

Use API tokens for services and tasks that require external access

While API tokens are often associated with a specific user, API tokens
can be used by services that require external access for activities
that may not correspond to a specific human, e.g. adding users during
setup for a tutorial or workshop. Add a service and its API token to the
JupyterHub configuration file, jupyterhub_config.py:

c.JupyterHub.services = [
 {'name': 'adding-users', 'api_token': 'super-secret-token'},
]

Restart JupyterHub

Upon restarting JupyterHub, you should see a message like below in the
logs:

Adding API token for <username>

Authenticating to single-user servers using API token

In JupyterHub 0.7, there is no mechanism for token authentication to
single-user servers, and only cookies can be used for authentication.
0.8 supports using JupyterHub API tokens to authenticate to single-user
servers.

Configure the idle culler to run as a Hub-Managed Service

Install the idle culler:

pip install jupyterhub-idle-culler

In jupyterhub_config.py, add the following dictionary for the
idle-culler Service to the c.JupyterHub.services list:

c.JupyterHub.services = [
 {
 'name': 'idle-culler',
 'command': [sys.executable, '-m', 'jupyterhub_idle_culler', '--timeout=3600'],
 }
]

c.JupyterHub.load_roles = [
 {
 "name": "list-and-cull", # name the role
 "services": [
 "idle-culler", # assign the service to this role
],
 "scopes": [
 # declare what permissions the service should have
 "list:users", # list users
 "read:users:activity", # read user last-activity
 "admin:servers", # start/stop servers
],
 }
]

where:

	command indicates that the Service will be launched as a
subprocess, managed by the Hub.

Changed in version 2.0: Prior to 2.0, the idle-culler required ‘admin’ permissions.
It now needs the scopes:

	list:users to access the user list endpoint

	read:users:activity to read activity info

	admin:servers to start/stop servers

Run cull-idle manually as a standalone script

Now you can run your script by providing it
the API token and it will authenticate through the REST API to
interact with it.

This will run the idle culler service manually. It can be run as a standalone
script anywhere with access to the Hub, and will periodically check for idle
servers and shut them down via the Hub’s REST API. In order to shutdown the
servers, the token given to cull-idle must have permission to list users
and admin their servers.

Generate an API token and store it in the JUPYTERHUB_API_TOKEN environment
variable. Run jupyterhub_idle_culler manually.

 export JUPYTERHUB_API_TOKEN='token'
 python -m jupyterhub_idle_culler [--timeout=900] [--url=http://127.0.0.1:8081/hub/api]

Frequently asked questions

How do I share links to notebooks?

In short, where you see /user/name/notebooks/foo.ipynb use /hub/user-redirect/notebooks/foo.ipynb (replace /user/name with /hub/user-redirect).

Sharing links to notebooks is a common activity,
and can look different based on what you mean.
Your first instinct might be to copy the URL you see in the browser,
e.g. hub.jupyter.org/user/yourname/notebooks/coolthing.ipynb.
However, let’s break down what this URL means:

hub.jupyter.org/user/yourname/ is the URL prefix handled by your server,
which means that sharing this URL is asking the person you share the link with
to come to your server and look at the exact same file.
In most circumstances, this is forbidden by permissions because the person you share with does not have access to your server.
What actually happens when someone visits this URL will depend on whether your server is running and other factors.

But what is our actual goal?
A typical situation is that you have some shared or common filesystem,
such that the same path corresponds to the same document
(either the exact same document or another copy of it).
Typically, what folks want when they do sharing like this
is for each visitor to open the same file on their own server,
so Breq would open /user/breq/notebooks/foo.ipynb and
Seivarden would open /user/seivarden/notebooks/foo.ipynb, etc.

JupyterHub has a special URL that does exactly this!
It’s called /hub/user-redirect/....
So if you replace /user/yourname in your URL bar
with /hub/user-redirect any visitor should get the same
URL on their own server, rather than visiting yours.

In JupyterLab 2.0, this should also be the result of the “Copy Shareable Link”
action in the file browser.

Institutional FAQ

This page contains common questions from users of JupyterHub,
broken down by their roles within organizations.

For all

Is it appropriate for adoption within a larger institutional context?

Yes! JupyterHub has been used at-scale for large pools of users, as well
as complex and high-performance computing. For example, UC Berkeley uses
JupyterHub for its Data Science Education Program courses (serving over
3,000 students). The Pangeo project uses JupyterHub to provide access
to scalable cloud computing with Dask. JupyterHub is stable and customizable
to the use-cases of large organizations.

I keep hearing about Jupyter Notebook, JupyterLab, and now JupyterHub. What’s the difference?

Here is a quick breakdown of these three tools:

	The Jupyter Notebook is a document specification (the .ipynb) file that interweaves
narrative text with code cells and their outputs. It is also a graphical interface
that allows users to edit these documents. There are also several other graphical interfaces
that allow users to edit the .ipynb format (nteract, Jupyter Lab, Google Colab, Kaggle, etc).

	JupyterLab is a flexible and extendible user interface for interactive computing. It
has several extensions that are tailored for using Jupyter Notebooks, as well as extensions
for other parts of the data science stack.

	JupyterHub is an application that manages interactive computing sessions for multiple users.
It also connects them with infrastructure those users wish to access. It can provide
remote access to Jupyter Notebooks and JupyterLab for many people.

For management

Briefly, what problem does JupyterHub solve for us?

JupyterHub provides a shared platform for data science and collaboration.
It allows users to utilize familiar data science workflows (such as the scientific Python stack,
the R tidyverse, and Jupyter Notebooks) on institutional infrastructure. It also allows administrators
some control over access to resources, security, environments, and authentication.

Is JupyterHub mature? Why should we trust it?

Yes - the core JupyterHub application recently
reached 1.0 status, and is considered stable and performant for most institutions.
JupyterHub has also been deployed (along with other tools) to work on
scalable infrastructure, large datasets, and high-performance computing.

Who else uses JupyterHub?

JupyterHub is used at a variety of institutions in academia,
industry, and government research labs. It is most-commonly used by two kinds of groups:

	Small teams (e.g., data science teams, research labs, or collaborative projects) to provide a
shared resource for interactive computing, collaboration, and analytics.

	Large teams (e.g., a department, a large class, or a large group of remote users) to provide
access to organizational hardware, data, and analytics environments at scale.

Here is a sample of organizations that use JupyterHub:

	Universities and colleges: UC Berkeley, UC San Diego, Cal Poly SLO, Harvard University, University of Chicago,
University of Oslo, University of Sheffield, Université Paris Sud, University of Versailles

	Research laboratories: NASA, NCAR, NOAA, the Large Synoptic Survey Telescope, Brookhaven National Lab,
Minnesota Supercomputing Institute, ALCF, CERN, Lawrence Livermore National Laboratory

	Online communities: Pangeo, Quantopian, mybinder.org, MathHub, Open Humans

	Computing infrastructure providers: NERSC, San Diego Supercomputing Center, Compute Canada

	Companies: Capital One, SANDVIK code, Globus

See the Gallery of JupyterHub deployments for
a more complete list of JupyterHub deployments at institutions.

How does JupyterHub compare with hosted products, like Google Colaboratory, RStudio.cloud, or Anaconda Enterprise?

JupyterHub puts you in control of your data, infrastructure, and coding environment.
In addition, it is vendor neutral, which reduces lock-in to a particular vendor or service.
JupyterHub provides access to interactive computing environments in the cloud (similar to each of these services).
Compared with the tools above, it is more flexible, more customizable, free, and
gives administrators more control over their setup and hardware.

Because JupyterHub is an open-source, community-driven tool, it can be extended and
modified to fit an institution’s needs. It plays nicely with the open source data science
stack, and can serve a variety of computing enviroments, user interfaces, and
computational hardware. It can also be deployed anywhere - on enterprise cloud infrastructure, on
High-Performance-Computing machines, on local hardware, or even on a single laptop, which
is not possible with most other tools for shared interactive computing.

For IT

How would I set up JupyterHub on institutional hardware?

That depends on what kind of hardware you’ve got. JupyterHub is flexible enough to be deployed
on a variety of hardware, including in-room hardware, on-prem clusters, cloud infrastructure,
etc.

The most common way to set up a JupyterHub is to use a JupyterHub distribution, these are pre-configured
and opinionated ways to set up a JupyterHub on particular kinds of infrastructure. The two distributions
that we currently suggest are:

	Zero to JupyterHub for Kubernetes [https://z2jh.jupyter.org] is a scalable JupyterHub deployment and
guide that runs on Kubernetes. Better for larger or dynamic user groups (50-10,000) or more complex
compute/data needs.

	The Littlest JupyterHub [https://tljh.jupyter.org] is a lightweight JupyterHub that runs on a single
single machine (in the cloud or under your desk). Better for smaller user groups (4-80) or more
lightweight computational resources.

Does JupyterHub run well in the cloud?

Yes - most deployments of JupyterHub are run via cloud infrastructure and on a variety of cloud providers.
Depending on the distribution of JupyterHub that you’d like to use, you can also connect your JupyterHub
deployment with a number of other cloud-native services so that users have access to other resources from
their interactive computing sessions.

For example, if you use the Zero to JupyterHub for Kubernetes [https://z2jh.jupyter.org] distribution,
you’ll be able to utilize container-based workflows of other technologies such as the dask-kubernetes [https://kubernetes.dask.org/en/latest/]
project for distributed computing.

The Z2JH Helm Chart also has some functionality built in for auto-scaling your cluster up and down
as more resources are needed - allowing you to utilize the benefits of a flexible cloud-based deployment.

Is JupyterHub secure?

The short answer: yes. JupyterHub as a standalone application has been battle-tested at an institutional
level for several years, and makes a number of “default” security decisions that are reasonable for most
users.

	For security considerations in the base JupyterHub application,
see the JupyterHub security page [https://jupyterhub.readthedocs.io/en/stable/reference/websecurity.html].

	For security considerations when deploying JupyterHub on Kubernetes, see the
JupyterHub on Kubernetes security page [https://zero-to-jupyterhub.readthedocs.io/en/latest/security.html].

The longer answer: it depends on your deployment. Because JupyterHub is very flexible, it can be used
in a variety of deployment setups. This often entails connecting your JupyterHub to other infrastructure
(such as a Dask Gateway service [https://gateway.dask.org/]). There are many security decisions to be made
in these cases, and the security of your JupyterHub deployment will often depend on these decisions.

If you are worried about security, don’t hesitate to reach out to the JupyterHub community in the
Jupyter Community Forum [https://discourse.jupyter.org/c/jupyterhub]. This community of practice has many
individuals with experience running secure JupyterHub deployments.

Does JupyterHub provide computing or data infrastructure?

No - JupyterHub manages user sessions and can control computing infrastructure, but it does not provide these
things itself. You are expected to run JupyterHub on your own infrastructure (local or in the cloud). Moreover,
JupyterHub has no internal concept of “data”, but is designed to be able to communicate with data repositories
(again, either locally or remotely) for use within interactive computing sessions.

How do I manage users?

JupyterHub offers a few options for managing your users. Upon setting up a JupyterHub, you can choose what
kind of authentication you’d like to use. For example, you can have users sign up with an institutional
email address, or choose a username / password when they first log-in, or offload authentication onto
another service such as an organization’s OAuth.

The users of a JupyterHub are stored locally, and can be modified manually by an administrator of the JupyterHub.
Moreover, the active users on a JupyterHub can be found on the administrator’s page. This page
gives you the abiltiy to stop or restart kernels, inspect user filesystems, and even take over user
sessions to assist them with debugging.

How do I manage software environments?

A key benefit of JupyterHub is the ability for an administrator to define the environment(s) that users
have access to. There are many ways to do this, depending on what kind of infrastructure you’re using for
your JupyterHub.

For example, The Littlest JupyterHub runs on a single VM. In this case, the administrator defines
an environment by installing packages to a shared folder that exists on the path of all users. The
JupyterHub for Kubernetes deployment uses Docker images to define environments. You can create your
own list of Docker images that users can select from, and can also control things like the amount of
RAM available to users, or the types of machines that their sessions will use in the cloud.

How does JupyterHub manage computational resources?

For interactive computing sessions, JupyterHub controls computational resources via a spawner.
Spawners define how a new user session is created, and are customized for particular kinds of
infrastructure. For example, the KubeSpawner knows how to control a Kubernetes deployment
to create new pods when users log in.

For more sophisticated computational resources (like distributed computing), JupyterHub can
connect with other infrastructure tools (like Dask or Spark). This allows users to control
scalable or high-performance resources from within their JupyterHub sessions. The logic of
how those resources are controlled is taken care of by the non-JupyterHub application.

Can JupyterHub be used with my high-performance computing resources?

Yes - JupyterHub can provide access to many kinds of computing infrastructure.
Especially when combined with other open-source schedulers such as Dask, you can manage fairly
complex computing infrastructures from the interactive sessions of a JupyterHub. For example
see the Dask HPC page [https://docs.dask.org/en/latest/setup/hpc.html].

How much resources do user sessions take?

This is highly configurable by the administrator. If you wish for your users to have simple
data analytics environments for prototyping and light data exploring, you can restrict their
memory and CPU based on the resources that you have available. If you’d like your JupyterHub
to serve as a gateway to high-performance compute or data resources, you may increase the
resources available on user machines, or connect them with computing infrastructures elsewhere.

Can I customize the look and feel of a JupyterHub?

JupyterHub provides some customization of the graphics displayed to users. The most common
modification is to add custom branding to the JupyterHub login page, loading pages, and
various elements that persist across all pages (such as headers).

For Technical Leads

Will JupyterHub “just work” with our team’s interactive computing setup?

Depending on the complexity of your setup, you’ll have different experiences with “out of the box”
distributions of JupyterHub. If all of the resources you need will fit on a single VM, then
The Littlest JupyterHub [https://tljh.jupyter.org] should get you up-and-running within
a half day or so. For more complex setups, such as scalable Kubernetes clusters or access
to high-performance computing and data, it will require more time and expertise with
the technologies your JupyterHub will use (e.g., dev-ops knowledge with cloud computing).

In general, the base JupyterHub deployment is not the bottleneck for setup, it is connecting
your JupyterHub with the various services and tools that you wish to provide to your users.

How well does JupyterHub scale? What are JupyterHub’s limitations?

JupyterHub works well at both a small scale (e.g., a single VM or machine) as well as a
high scale (e.g., a scalable Kubernetes cluster). It can be used for teams as small as 2, and
for user bases as large as 10,000. The scalability of JupyterHub largely depends on the
infrastructure on which it is deployed. JupyterHub has been designed to be lightweight and
flexible, so you can tailor your JupyterHub deployment to your needs.

Is JupyterHub resilient? What happens when a machine goes down?

For JupyterHubs that are deployed in a containerized environment (e.g., Kubernetes), it is
possible to configure the JupyterHub to be fairly resistant to failures in the system.
For example, if JupyterHub fails, then user sessions will not be affected (though new
users will not be able to log in). When a JupyterHub process is restarted, it should
seamlessly connect with the user database and the system will return to normal.
Again, the details of your JupyterHub deployment (e.g., whether it’s deployed on a scalable cluster)
will affect the resiliency of the deployment.

What interfaces does JupyterHub support?

Out of the box, JupyterHub supports a variety of popular data science interfaces for user sessions,
such as JupyterLab, Jupyter Notebooks, and RStudio. Any interface that can be served
via a web address can be served with a JupyterHub (with the right setup).

Does JupyterHub make it easier for our team to collaborate?

JupyterHub provides a standardized environment and access to shared resources for your teams.
This greatly reduces the cost associated with sharing analyses and content with other team
members, and makes it easier to collaborate and build off of one another’s ideas. Combined with
access to high-performance computing and data, JupyterHub provides a common resource to
amplify your team’s ability to prototype their analyses, scale them to larger data, and then
share their results with one another.

JupyterHub also provides a computational framework to share computational narratives between
different levels of an organization. For example, data scientists can share Jupyter Notebooks
rendered as Voilà dashboards [https://voila.readthedocs.io/en/stable/] with those who are not
familiar with programming, or create publicly-available interactive analyses to allow others to
interact with your work.

Can I use JupyterHub with R/RStudio or other languages and environments?

Yes, Jupyter is a polyglot project, and there are over 40 community-provided kernels for a variety
of languages (the most common being Python, Julia, and R). You can also use a JupyterHub to provide
access to other interfaces, such as RStudio, that provide their own access to a language kernel.

Technical Reference

This section covers more of the details of the JupyterHub architecture, as well as
what happens under-the-hood when you deploy and configure your JupyterHub.

	Technical Overview
	The Subsystems: Hub, Proxy, Single-User Notebook Server

	How the Subsystems Interact

	The Process from JupyterHub Access to User Login

	Default Behavior

	Customizing JupyterHub

	JupyterHub URL scheme
	/

	/hub/

	/hub/home

	/hub/login

	/hub/logout

	/user/:username[/:servername]

	/hub/user/:username[/:servername]

	/user-redirect/...

	Spawning

	/hub/token

	/hub/admin

	Security Overview
	Semi-trusted and untrusted users

	Protect users from each other

	Mitigate security issues

	Security audits

	Vulnerability reporting

	Authenticators
	The default PAM Authenticator

	The OAuthenticator

	The Dummy Authenticator

	Additional Authenticators

	Technical Overview of Authentication

	pre_spawn_start and post_spawn_stop hooks

	JupyterHub as an OAuth provider

	Spawners
	Examples

	Spawner control methods

	Spawner state

	Spawner options form

	Writing a custom spawner

	Environment variables and command-line arguments

	Spawners, resource limits, and guarantees (Optional)

	Services
	Definition of a Service

	Properties of a Service

	Hub-Managed Services

	Launching a Hub-Managed Service

	Externally-Managed Services

	Writing your own Services

	Hub Authentication and Services

	Writing a custom Proxy implementation
	Subclassing Proxy

	Starting and stopping the proxy

	Encryption

	Routes

	Note on activity tracking

	Running proxy separately from the hub
	Background

	Configuration options

	Proxy configuration

	Docker image

	See also

	Using JupyterHub’s REST API
	What you can do with the API

	Create an API token

	Assigning permissions to a token

	Make an API request

	Paginating API requests

	Enabling users to spawn multiple named-servers via the API

	Learn more about the API

	JupyterHub REST API

	Starting servers with the JupyterHub API
	Checking server status

	Starting servers

	Waiting for a server

	Stopping servers

	Communicating with servers

	Python example

	Monitoring
	List of Prometheus Metrics

	The Hub’s Database
	Default SQLite database

	Using an RDBMS (PostgreSQL, MySQL)

	Notes and Tips

	Working with templates and UI
	Custom Templates

	Extending Templates

	Page Announcements

	Deploying JupyterHub in “API only mode”
	Limited UI customization via templates

	Rich UI customization with REST API based apps

	Disabling Hub UI

	Eventlogging and Telemetry
	How to emit events

	Event schemas

	Configuring user environments
	Installing packages

	Configuring Jupyter and IPython

	Installing kernelspecs

	Multi-user hosts vs. Containers

	Named servers

	Switching back to classic notebook

	Configuration examples

	Configure GitHub OAuth

	Using a reverse proxy
	nginx

	Apache

	Run JupyterHub without root privileges using sudo
	Overview

	Create a user

	Set up sudospawner

	Edit /etc/sudoers

	Test sudo setup

	Enable PAM for non-root

	Test that PAM works

	Make a directory for JupyterHub

	Start jupyterhub

	Troubleshooting: SELinux

	Troubleshooting: PAM session errors

	Configuration Reference
	JupyterHub configuration

	JupyterHub help command output

	JupyterHub and OAuth
	Key OAuth terms

	One oauth flow

	Full sequence of OAuth in JupyterHub

	Token caches and expiry

	Extra bits

Technical Overview

The Technical Overview section gives you a high-level view of:

	JupyterHub’s Subsystems: Hub, Proxy, Single-User Notebook Server

	how the subsystems interact

	the process from JupyterHub access to user login

	JupyterHub’s default behavior

	customizing JupyterHub

The goal of this section is to share a deeper technical understanding of
JupyterHub and how it works.

The Subsystems: Hub, Proxy, Single-User Notebook Server

JupyterHub is a set of processes that together provide a single user Jupyter
Notebook server for each person in a group. Three major subsystems are started
by the jupyterhub command line program:

	Hub (Python/Tornado): manages user accounts, authentication, and
coordinates Single User Notebook Servers using a Spawner.

	Proxy: the public facing part of JupyterHub that uses a dynamic proxy
to route HTTP requests to the Hub and Single User Notebook Servers.
configurable http proxy [https://github.com/jupyterhub/configurable-http-proxy]
(node-http-proxy) is the default proxy.

	Single-User Notebook Server (Python/Tornado): a dedicated,
single-user, Jupyter Notebook server is started for each user on the system
when the user logs in. The object that starts the single-user notebook
servers is called a Spawner.

[image: JupyterHub subsystems]

How the Subsystems Interact

Users access JupyterHub through a web browser, by going to the IP address or
the domain name of the server.

The basic principles of operation are:

	The Hub spawns the proxy (in the default JupyterHub configuration)

	The proxy forwards all requests to the Hub by default

	The Hub handles login, and spawns single-user notebook servers on demand

	The Hub configures the proxy to forward url prefixes to single-user notebook
servers

The proxy is the only process that listens on a public interface. The Hub sits
behind the proxy at /hub. Single-user servers sit behind the proxy at
/user/[username].

Different authenticators control access
to JupyterHub. The default one (PAM) uses the user accounts on the server where
JupyterHub is running. If you use this, you will need to create a user account
on the system for each user on your team. Using other authenticators, you can
allow users to sign in with e.g. a GitHub account, or with any single-sign-on
system your organization has.

Next, spawners control how JupyterHub starts
the individual notebook server for each user. The default spawner will
start a notebook server on the same machine running under their system username.
The other main option is to start each server in a separate container, often
using Docker.

The Process from JupyterHub Access to User Login

When a user accesses JupyterHub, the following events take place:

	Login data is handed to the Authenticator instance for
validation

	The Authenticator returns the username if the login information is valid

	A single-user notebook server instance is spawned for the
logged-in user

	When the single-user notebook server starts, the proxy is notified to forward
requests to /user/[username]/* to the single-user notebook server.

	A cookie is set on /hub/, containing an encrypted token. (Prior to version
0.8, a cookie for /user/[username] was used too.)

	The browser is redirected to /user/[username], and the request is handled by
the single-user notebook server.

The single-user server identifies the user with the Hub via OAuth:

	on request, the single-user server checks a cookie

	if no cookie is set, redirect to the Hub for verification via OAuth

	after verification at the Hub, the browser is redirected back to the
single-user server

	the token is verified and stored in a cookie

	if no user is identified, the browser is redirected back to /hub/login

Default Behavior

By default, the Proxy listens on all public interfaces on port 8000.
Thus you can reach JupyterHub through either:

	http://localhost:8000

	or any other public IP or domain pointing to your system.

In their default configuration, the other services, the Hub and
Single-User Notebook Servers, all communicate with each other on localhost
only.

By default, starting JupyterHub will write two files to disk in the current
working directory:

	jupyterhub.sqlite is the SQLite database containing all of the state of the
Hub. This file allows the Hub to remember which users are running and
where, as well as storing other information enabling you to restart parts of
JupyterHub separately. It is important to note that this database contains
no sensitive information other than Hub usernames.

	jupyterhub_cookie_secret is the encryption key used for securing cookies.
This file needs to persist so that a Hub server restart will avoid
invalidating cookies. Conversely, deleting this file and restarting the server
effectively invalidates all login cookies. The cookie secret file is discussed
in the Cookie Secret section of the Security Settings document.

The location of these files can be specified via configuration settings. It is
recommended that these files be stored in standard UNIX filesystem locations,
such as /etc/jupyterhub for all configuration files and /srv/jupyterhub for
all security and runtime files.

Customizing JupyterHub

There are two basic extension points for JupyterHub:

	How users are authenticated by Authenticators

	How user’s single-user notebook server processes are started by
Spawners

Each is governed by a customizable class, and JupyterHub ships with basic
defaults for each.

To enable custom authentication and/or spawning, subclass Authenticator or
Spawner, and override the relevant methods.

JupyterHub URL scheme

This document describes how JupyterHub routes requests.

This does not include the REST API urls.

In general, all URLs can be prefixed with c.JupyterHub.base_url to
run the whole JupyterHub application on a prefix.

All authenticated handlers redirect to /hub/login to login users
prior to being redirected back to the originating page.
The returned request should preserve all query parameters.

/

The top-level request is always a simple redirect to /hub/,
to be handled by the default JupyterHub handler.

In general, all requests to /anything that do not start with /hub/
but are routed to the Hub, will be redirected to /hub/anything before being handled by the Hub.

/hub/

This is an authenticated URL.

This handler redirects users to the default URL of the application,
which defaults to the user’s default server.
That is, it redirects to /hub/spawn if the user’s server is not running,
or the server itself (/user/:name) if the server is running.

This default url behavior can be customized in two ways:

To redirect users to the JupyterHub home page (/hub/home)
instead of spawning their server,
set redirect_to_server to False:

c.JupyterHub.redirect_to_server = False

This might be useful if you have a Hub where you expect
users to be managing multiple server configurations
and automatic spawning is not desirable.

Second, you can customise the landing page to any page you like,
such as a custom service you have deployed e.g. with course information:

c.JupyterHub.default_url = '/services/my-landing-service'

/hub/home

[image: The Hub home page with named servers enabled]

By default, the Hub home page has just one or two buttons
for starting and stopping the user’s server.

If named servers are enabled, there will be some additional
tools for management of named servers.

Version added: 1.0 named server UI is new in 1.0.

/hub/login

This is the JupyterHub login page.
If you have a form-based username+password login,
such as the default PAMAuthenticator,
this page will render the login form.

[image: A login form]

If login is handled by an external service,
e.g. with OAuth, this page will have a button,
declaring “Login with …” which users can click
to login with the chosen service.

[image: A login redirect button]

If you want to skip the user-interaction to initiate logging in
via the button, you can set

c.Authenticator.auto_login = True

This can be useful when the user is “already logged in” via some mechanism,
but a handshake via redirects is necessary to complete the authentication with JupyterHub.

/hub/logout

Visiting /hub/logout clears cookies from the current browser.
Note that logging out does not stop a user’s server(s) by default.

If you would like to shutdown user servers on logout,
you can enable this behavior with:

c.JupyterHub.shutdown_on_logout = True

Be careful with this setting because logging out one browser
does not mean the user is no longer actively using their server from another machine.

/user/:username[/:servername]

If a user’s server is running, this URL is handled by the user’s given server,
not the Hub.
The username is the first part and, if using named servers,
the server name is the second part.

If the user’s server is not running, this will be redirected to /hub/user/:username/...

/hub/user/:username[/:servername]

This URL indicates a request for a user server that is not running
(because /user/... would have been handled by the notebook server
if the specified server were running).

Handling this URL is the most complicated condition in JupyterHub,
because there can be many states:

	server is not active
a. user matches
b. user doesn’t match

	server is ready

	server is pending, but not ready

If the server is pending spawn,
the browser will be redirected to /hub/spawn-pending/:username/:servername
to see a progress page while waiting for the server to be ready.

If the server is not active at all,
a page will be served with a link to /hub/spawn/:username/:servername.
Following that link will launch the requested server.
The HTTP status will be 503 in this case because a request has been made for a server that is not running.

If the server is ready, it is assumed that the proxy has not yet registered the route.
Some checks are performed and a delay is added before redirecting back to /user/:username/:servername/....
If something is really wrong, this can result in a redirect loop.

Visiting this page will never result in triggering the spawn of servers
without additional user action (i.e. clicking the link on the page)

[image: Visiting a URL for a server that's not running]

Version changed: 1.0

Prior to 1.0, this URL itself was responsible for spawning servers,
and served the progress page if it was pending,
redirected to running servers, and
This was useful because it made sure that requested servers were restarted after they stopped,
but could also be harmful because unused servers would continuously be restarted if e.g.
an idle JupyterLab frontend were open pointed at it,
which constantly makes polling requests.

Special handling of API requests

Requests to /user/:username[/:servername]/api/... are assumed to be
from applications connected to stopped servers.
These are failed with 503 and an informative JSON error message
indicating how to spawn the server.
This is meant to help applications such as JupyterLab
that are connected to a server that has stopped.

Version changed: 1.0

JupyterHub 0.9 failed these API requests with status 404,
but 1.0 uses 503.

/user-redirect/...

This URL is for sharing a URL that will redirect a user
to a path on their own default server.
This is useful when users have the same file at the same URL on their servers,
and you want a single link to give to any user that will open that file on their server.

e.g. a link to /user-redirect/notebooks/Index.ipynb
will send user hortense to /user/hortense/notebooks/Index.ipynb

DO NOT share links to your own server with other users.
This will not work in general,
unless you grant those users access to your server.

Contributions welcome: The JupyterLab “shareable link” should share this link
when run with JupyterHub, but it does not.
See jupyterlab-hub [https://github.com/jupyterhub/jupyterlab-hub]
where this should probably be done and
this issue in JupyterLab [https://github.com/jupyterlab/jupyterlab/issues/5388]
that is intended to make it possible.

Spawning

/hub/spawn[/:username[/:servername]]

Requesting /hub/spawn will spawn the default server for the current user.
If username and optionally servername are specified,
then the specified server for the specified user will be spawned.
Once spawn has been requested,
the browser is redirected to /hub/spawn-pending/....

If Spawner.options_form is used,
this will render a form,
and a POST request will trigger the actual spawn and redirect.

[image: The spawn form]

Version added: 1.0

1.0 adds the ability to specify username and servername.
Prior to 1.0, only /hub/spawn was recognized for the default server.

Version changed: 1.0

Prior to 1.0, this page redirected back to /hub/user/:username,
which was responsible for triggering spawn and rendering progress, etc.

/hub/spawn-pending[/:username[/:servername]]

[image: The spawn pending page]

Version added: 1.0 this URL is new in JupyterHub 1.0.

This page renders the progress view for the given spawn request.
Once the server is ready,
the browser is redirected to the running server at /user/:username/:servername/....

If this page is requested at any time after the specified server is ready,
the browser will be redirected to the running server.

Requesting this page will never trigger any side effects.
If the server is not running (e.g. because the spawn has failed),
the spawn failure message (if applicable) will be displayed,
and the page will show a link back to /hub/spawn/....

/hub/token

[image: The token management page]

On this page, users can manage their JupyterHub API tokens.
They can revoke access and request new tokens for writing scripts
against the JupyterHub REST API.

/hub/admin

[image: The admin panel]

Administrators can take various administrative actions from this page:

	add/remove users

	grant admin privileges

	start/stop user servers

	shutdown JupyterHub itself

Security Overview

The Security Overview section helps you learn about:

	the design of JupyterHub with respect to web security

	the semi-trusted user

	the available mitigations to protect untrusted users from each other

	the value of periodic security audits.

This overview also helps you obtain a deeper understanding of how JupyterHub
works.

Semi-trusted and untrusted users

JupyterHub is designed to be a simple multi-user server for modestly sized
groups of semi-trusted users. While the design reflects serving semi-trusted
users, JupyterHub is not necessarily unsuitable for serving untrusted users.

Using JupyterHub with untrusted users does mean more work by the
administrator. Much care is required to secure a Hub, with extra caution on
protecting users from each other as the Hub is serving untrusted users.

One aspect of JupyterHub’s design simplicity for semi-trusted users is that
the Hub and single-user servers are placed in a single domain, behind a
proxy [https://github.com/jupyterhub/configurable-http-proxy]. If the Hub is serving untrusted
users, many of the web’s cross-site protections are not applied between
single-user servers and the Hub, or between single-user servers and each
other, since browsers see the whole thing (proxy, Hub, and single user
servers) as a single website (i.e. single domain).

Protect users from each other

To protect users from each other, a user must never be able to write arbitrary
HTML and serve it to another user on the Hub’s domain. JupyterHub’s
authentication setup prevents a user writing arbitrary HTML and serving it to
another user because only the owner of a given single-user notebook server is
allowed to view user-authored pages served by the given single-user notebook
server.

To protect all users from each other, JupyterHub administrators must
ensure that:

	A user does not have permission to modify their single-user notebook server,
including:

	A user may not install new packages in the Python environment that runs
their single-user server.

	If the PATH is used to resolve the single-user executable (instead of
using an absolute path), a user may not create new files in any PATH
directory that precedes the directory containing jupyterhub-singleuser.

	A user may not modify environment variables (e.g. PATH, PYTHONPATH) for
their single-user server.

	A user may not modify the configuration of the notebook server
(the ~/.jupyter or JUPYTER_CONFIG_DIR directory).

If any additional services are run on the same domain as the Hub, the services
must never display user-authored HTML that is neither sanitized nor sandboxed
(e.g. IFramed) to any user that lacks authentication as the author of a file.

Mitigate security issues

Several approaches to mitigating these issues with configuration
options provided by JupyterHub include:

Enable subdomains

JupyterHub provides the ability to run single-user servers on their own
subdomains. This means the cross-origin protections between servers has the
desired effect, and user servers and the Hub are protected from each other. A
user’s single-user server will be at username.jupyter.mydomain.com. This also
requires all user subdomains to point to the same address, which is most easily
accomplished with wildcard DNS. Since this spreads the service across multiple
domains, you will need wildcard SSL, as well. Unfortunately, for many
institutional domains, wildcard DNS and SSL are not available. If you do plan
to serve untrusted users, enabling subdomains is highly encouraged, as it
resolves the cross-site issues.

Disable user config

If subdomains are not available or not desirable, JupyterHub provides a
configuration option Spawner.disable_user_config, which can be set to prevent
the user-owned configuration files from being loaded. After implementing this
option, PATHs and package installation and PATHs are the other things that the
admin must enforce.

Prevent spawners from evaluating shell configuration files

For most Spawners, PATH is not something users can influence, but care should
be taken to ensure that the Spawner does not evaluate shell configuration
files prior to launching the server.

Isolate packages using virtualenv

Package isolation is most easily handled by running the single-user server in
a virtualenv with disabled system-site-packages. The user should not have
permission to install packages into this environment.

It is important to note that the control over the environment only affects the
single-user server, and not the environment(s) in which the user’s kernel(s)
may run. Installing additional packages in the kernel environment does not
pose additional risk to the web application’s security.

Encrypt internal connections with SSL/TLS

By default, all communication on the server, between the proxy, hub, and single
-user notebooks is performed unencrypted. Setting the internal_ssl flag in
jupyterhub_config.py secures the aforementioned routes. Turning this
feature on does require that the enabled Spawner can use the certificates
generated by the Hub (the default LocalProcessSpawner can, for instance).

It is also important to note that this encryption does not (yet) cover the
zmq tcp sockets between the Notebook client and kernel. While users cannot
submit arbitrary commands to another user’s kernel, they can bind to these
sockets and listen. When serving untrusted users, this eavesdropping can be
mitigated by setting KernelManager.transport to ipc. This applies standard
Unix permissions to the communication sockets thereby restricting
communication to the socket owner. The internal_ssl option will eventually
extend to securing the tcp sockets as well.

Security audits

We recommend that you do periodic reviews of your deployment’s security. It’s
good practice to keep JupyterHub, configurable-http-proxy, and nodejs
versions up to date.

A handy website for testing your deployment is
Qualsys’ SSL analyzer tool [https://www.ssllabs.com/ssltest/analyze.html].

Vulnerability reporting

If you believe you’ve found a security vulnerability in JupyterHub, or any
Jupyter project, please report it to
security@ipython.org. If you prefer to encrypt
your security reports, you can use this PGP public
key [https://jupyter-notebook.readthedocs.io/en/stable/_downloads/ipython_security.asc].

Authenticators

The Authenticator [https://github.com/jupyterhub/jupyterhub/blob/HEAD/jupyterhub/auth.py] is the mechanism for authorizing users to use the
Hub and single user notebook servers.

The default PAM Authenticator

JupyterHub ships with the default PAM [https://en.wikipedia.org/wiki/Pluggable_authentication_module]-based Authenticator, for
logging in with local user accounts via a username and password.

The OAuthenticator

Some login mechanisms, such as OAuth [https://en.wikipedia.org/wiki/OAuth], don’t map onto username and
password authentication, and instead use tokens. When using these
mechanisms, you can override the login handlers.

You can see an example implementation of an Authenticator that uses
GitHub OAuth [https://developer.github.com/v3/oauth/] at OAuthenticator [https://github.com/jupyterhub/oauthenticator].

JupyterHub’s OAuthenticator [https://github.com/jupyterhub/oauthenticator] currently supports the following
popular services:

	Auth0

	Bitbucket

	CILogon

	GitHub

	GitLab

	Globus

	Google

	MediaWiki

	Okpy

	OpenShift

A generic implementation, which you can use for OAuth authentication
with any provider, is also available.

The Dummy Authenticator

When testing, it may be helpful to use the
jupyterhub.auth.DummyAuthenticator. This allows for any username and
password unless if a global password has been set. Once set, any username will
still be accepted but the correct password will need to be provided.

Additional Authenticators

A partial list of other authenticators is available on the
JupyterHub wiki [https://github.com/jupyterhub/jupyterhub/wiki/Authenticators].

Technical Overview of Authentication

How the Base Authenticator works

The base authenticator uses simple username and password authentication.

The base Authenticator has one central method:

Authenticator.authenticate method

Authenticator.authenticate(handler, data)

This method is passed the Tornado RequestHandler and the POST data
from JupyterHub’s login form. Unless the login form has been customized,
data will have two keys:

	username

	password

The authenticate method’s job is simple:

	return the username (non-empty str) of the authenticated user if
authentication is successful

	return None otherwise

Writing an Authenticator that looks up passwords in a dictionary
requires only overriding this one method:

from IPython.utils.traitlets import Dict
from jupyterhub.auth import Authenticator

class DictionaryAuthenticator(Authenticator):

 passwords = Dict(config=True,
 help="""dict of username:password for authentication"""
)

 async def authenticate(self, handler, data):
 if self.passwords.get(data['username']) == data['password']:
 return data['username']

Normalize usernames

Since the Authenticator and Spawner both use the same username,
sometimes you want to transform the name coming from the authentication service
(e.g. turning email addresses into local system usernames) before adding them to the Hub service.
Authenticators can define normalize_username, which takes a username.
The default normalization is to cast names to lowercase

For simple mappings, a configurable dict Authenticator.username_map is used to turn one name into another:

c.Authenticator.username_map = {
 'service-name': 'localname'
}

When using PAMAuthenticator, you can set
c.PAMAuthenticator.pam_normalize_username = True, which will
normalize usernames using PAM (basically round-tripping them: username
to uid to username), which is useful in case you use some external
service that allows multiple usernames mapping to the same user (such
as ActiveDirectory, yes, this really happens). When
pam_normalize_username is on, usernames are not normalized to
lowercase.

Validate usernames

In most cases, there is a very limited set of acceptable usernames.
Authenticators can define validate_username(username),
which should return True for a valid username and False for an invalid one.
The primary effect this has is improving error messages during user creation.

The default behavior is to use configurable Authenticator.username_pattern,
which is a regular expression string for validation.

To only allow usernames that start with ‘w’:

c.Authenticator.username_pattern = r'w.*'

How to write a custom authenticator

You can use custom Authenticator subclasses to enable authentication
via other mechanisms. One such example is using GitHub OAuth [https://developer.github.com/v3/oauth/].

Because the username is passed from the Authenticator to the Spawner,
a custom Authenticator and Spawner are often used together.
For example, the Authenticator methods, pre_spawn_start(user, spawner) [https://jupyterhub.readthedocs.io/en/latest/api/auth.html#jupyterhub.auth.Authenticator.pre_spawn_start]
and post_spawn_stop(user, spawner) [https://jupyterhub.readthedocs.io/en/latest/api/auth.html#jupyterhub.auth.Authenticator.post_spawn_stop], are hooks that can be used to do
auth-related startup (e.g. opening PAM sessions) and cleanup
(e.g. closing PAM sessions).

See a list of custom Authenticators on the wiki [https://github.com/jupyterhub/jupyterhub/wiki/Authenticators].

If you are interested in writing a custom authenticator, you can read
this tutorial [http://jupyterhub-tutorial.readthedocs.io/en/latest/authenticators.html].

Registering custom Authenticators via entry points

As of JupyterHub 1.0, custom authenticators can register themselves via
the jupyterhub.authenticators entry point metadata.
To do this, in your setup.py add:

setup(
 ...
 entry_points={
 'jupyterhub.authenticators': [
 'myservice = mypackage:MyAuthenticator',
],
 },
)

If you have added this metadata to your package,
users can select your authenticator with the configuration:

c.JupyterHub.authenticator_class = 'myservice'

instead of the full

c.JupyterHub.authenticator_class = 'mypackage:MyAuthenticator'

previously required.
Additionally, configurable attributes for your authenticator will
appear in jupyterhub help output and auto-generated configuration files
via jupyterhub --generate-config.

Authentication state

JupyterHub 0.8 adds the ability to persist state related to authentication,
such as auth-related tokens.
If such state should be persisted, .authenticate() should return a dictionary of the form:

{
 'name': username,
 'auth_state': {
 'key': 'value',
 }
}

where username is the username that has been authenticated,
and auth_state is any JSON-serializable dictionary.

Because auth_state may contain sensitive information,
it is encrypted before being stored in the database.
To store auth_state, two conditions must be met:

	persisting auth state must be enabled explicitly via configuration

c.Authenticator.enable_auth_state = True

	encryption must be enabled by the presence of JUPYTERHUB_CRYPT_KEY environment variable,
which should be a hex-encoded 32-byte key.
For example:

export JUPYTERHUB_CRYPT_KEY=$(openssl rand -hex 32)

JupyterHub uses Fernet [https://cryptography.io/en/latest/fernet/] to encrypt auth_state.
To facilitate key-rotation, JUPYTERHUB_CRYPT_KEY may be a semicolon-separated list of encryption keys.
If there are multiple keys present, the first key is always used to persist any new auth_state.

Using auth_state

Typically, if auth_state is persisted it is desirable to affect the Spawner environment in some way.
This may mean defining environment variables, placing certificate in the user’s home directory, etc.
The Authenticator.pre_spawn_start method can be used to pass information from authenticator state
to Spawner environment:

class MyAuthenticator(Authenticator):
 async def authenticate(self, handler, data=None):
 username = await identify_user(handler, data)
 upstream_token = await token_for_user(username)
 return {
 'name': username,
 'auth_state': {
 'upstream_token': upstream_token,
 },
 }

 async def pre_spawn_start(self, user, spawner):
 """Pass upstream_token to spawner via environment variable"""
 auth_state = await user.get_auth_state()
 if not auth_state:
 # auth_state not enabled
 return
 spawner.environment['UPSTREAM_TOKEN'] = auth_state['upstream_token']

pre_spawn_start and post_spawn_stop hooks

Authenticators uses two hooks, pre_spawn_start(user, spawner) [https://jupyterhub.readthedocs.io/en/latest/api/auth.html#jupyterhub.auth.Authenticator.pre_spawn_start] and
post_spawn_stop(user, spawner) [https://jupyterhub.readthedocs.io/en/latest/api/auth.html#jupyterhub.auth.Authenticator.post_spawn_stop] to add pass additional state information
between the authenticator and a spawner. These hooks are typically used auth-related
startup, i.e. opening a PAM session, and auth-related cleanup, i.e. closing a
PAM session.

JupyterHub as an OAuth provider

Beginning with version 0.8, JupyterHub is an OAuth provider.

Spawners

A Spawner [https://github.com/jupyterhub/jupyterhub/blob/HEAD/jupyterhub/spawner.py] starts each single-user notebook server.
The Spawner represents an abstract interface to a process,
and a custom Spawner needs to be able to take three actions:

	start the process

	poll whether the process is still running

	stop the process

Examples

Custom Spawners for JupyterHub can be found on the JupyterHub wiki [https://github.com/jupyterhub/jupyterhub/wiki/Spawners].
Some examples include:

	DockerSpawner [https://github.com/jupyterhub/dockerspawner] for spawning user servers in Docker containers

	dockerspawner.DockerSpawner for spawning identical Docker containers for
each users

	dockerspawner.SystemUserSpawner for spawning Docker containers with an
environment and home directory for each users

	both DockerSpawner and SystemUserSpawner also work with Docker Swarm for
launching containers on remote machines

	SudoSpawner [https://github.com/jupyterhub/sudospawner] enables JupyterHub to
run without being root, by spawning an intermediate process via sudo

	BatchSpawner [https://github.com/jupyterhub/batchspawner] for spawning remote
servers using batch systems

	YarnSpawner [https://github.com/jupyterhub/yarnspawner] for spawning notebook
servers in YARN containers on a Hadoop cluster

	SSHSpawner [https://github.com/NERSC/sshspawner] to spawn notebooks
on a remote server using SSH

Spawner control methods

Spawner.start

Spawner.start should start the single-user server for a single user.
Information about the user can be retrieved from self.user,
an object encapsulating the user’s name, authentication, and server info.

The return value of Spawner.start should be the (ip, port) of the running server,
or a full URL as a string.

Most Spawner.start functions will look similar to this example:

async def start(self):
 self.ip = '127.0.0.1'
 self.port = random_port()
 # get environment variables,
 # several of which are required for configuring the single-user server
 env = self.get_env()
 cmd = []
 # get jupyterhub command to run,
 # typically ['jupyterhub-singleuser']
 cmd.extend(self.cmd)
 cmd.extend(self.get_args())

 await self._actually_start_server_somehow(cmd, env)
 # url may not match self.ip:self.port, but it could!
 url = self._get_connectable_url()
 return url

When Spawner.start returns, the single-user server process should actually be running,
not just requested. JupyterHub can handle Spawner.start being very slow
(such as PBS-style batch queues, or instantiating whole AWS instances)
via relaxing the Spawner.start_timeout config value.

Note on IPs and ports

Spawner.ip and Spawner.port attributes set the bind url,
which the single-user server should listen on
(passed to the single-user process via the JUPYTERHUB_SERVICE_URL environment variable).
The return value is the ip and port (or full url) the Hub should connect to.
These are not necessarily the same, and usually won’t be in any Spawner that works with remote resources or containers.

The default for Spawner.ip, and Spawner.port is 127.0.0.1:{random},
which is appropriate for Spawners that launch local processes,
where everything is on localhost and each server needs its own port.
For remote or container Spawners, it will often make sense to use a different value,
such as ip = '0.0.0.0' and a fixed port, e.g. 8888.
The defaults can be changed in the class,
preserving configuration with traitlets:

from traitlets import default
from jupyterhub.spawner import Spawner

class MySpawner(Spawner):
 @default("ip")
 def _default_ip(self):
 return '0.0.0.0'

 @default("port")
 def _default_port(self):
 return 8888

 async def start(self):
 env = self.get_env()
 cmd = []
 # get jupyterhub command to run,
 # typically ['jupyterhub-singleuser']
 cmd.extend(self.cmd)
 cmd.extend(self.get_args())

 remote_server_info = await self._actually_start_server_somehow(cmd, env)
 url = self.get_public_url_from(remote_server_info)
 return url

Spawner.poll

Spawner.poll should check if the spawner is still running.
It should return None if it is still running,
and an integer exit status, otherwise.

For the local process case, Spawner.poll uses os.kill(PID, 0)
to check if the local process is still running. On Windows, it uses psutil.pid_exists.

Spawner.stop

Spawner.stop should stop the process. It must be a tornado coroutine, which should return when the process has finished exiting.

Spawner state

JupyterHub should be able to stop and restart without tearing down
single-user notebook servers. To do this task, a Spawner may need to persist
some information that can be restored later.
A JSON-able dictionary of state can be used to store persisted information.

Unlike start, stop, and poll methods, the state methods must not be coroutines.

For the single-process case, the Spawner state is only the process ID of the server:

def get_state(self):
 """get the current state"""
 state = super().get_state()
 if self.pid:
 state['pid'] = self.pid
 return state

def load_state(self, state):
 """load state from the database"""
 super().load_state(state)
 if 'pid' in state:
 self.pid = state['pid']

def clear_state(self):
 """clear any state (called after shutdown)"""
 super().clear_state()
 self.pid = 0

Spawner options form

(new in 0.4)

Some deployments may want to offer options to users to influence how their servers are started.
This may include cluster-based deployments, where users specify what resources should be available,
or docker-based deployments where users can select from a list of base images.

This feature is enabled by setting Spawner.options_form, which is an HTML form snippet
inserted unmodified into the spawn form.
If the Spawner.options_form is defined, when a user tries to start their server, they will be directed to a form page, like this:

[image: spawn-form]

If Spawner.options_form is undefined, the user’s server is spawned directly, and no spawn page is rendered.

See this example [https://github.com/jupyterhub/jupyterhub/blob/HEAD/examples/spawn-form/jupyterhub_config.py] for a form that allows custom CLI args for the local spawner.

Spawner.options_from_form

Options from this form will always be a dictionary of lists of strings, e.g.:

{
 'integer': ['5'],
 'text': ['some text'],
 'select': ['a', 'b'],
}

When formdata arrives, it is passed through Spawner.options_from_form(formdata),
which is a method to turn the form data into the correct structure.
This method must return a dictionary, and is meant to interpret the lists-of-strings into the correct types. For example, the options_from_form for the above form would look like:

def options_from_form(self, formdata):
 options = {}
 options['integer'] = int(formdata['integer'][0]) # single integer value
 options['text'] = formdata['text'][0] # single string value
 options['select'] = formdata['select'] # list already correct
 options['notinform'] = 'extra info' # not in the form at all
 return options

which would return:

{
 'integer': 5,
 'text': 'some text',
 'select': ['a', 'b'],
 'notinform': 'extra info',
}

When Spawner.start is called, this dictionary is accessible as self.user_options.

Writing a custom spawner

If you are interested in building a custom spawner, you can read this tutorial [http://jupyterhub-tutorial.readthedocs.io/en/latest/spawners.html].

Registering custom Spawners via entry points

As of JupyterHub 1.0, custom Spawners can register themselves via
the jupyterhub.spawners entry point metadata.
To do this, in your setup.py add:

setup(
 ...
 entry_points={
 'jupyterhub.spawners': [
 'myservice = mypackage:MySpawner',
],
 },
)

If you have added this metadata to your package,
users can select your spawner with the configuration:

c.JupyterHub.spawner_class = 'myservice'

instead of the full

c.JupyterHub.spawner_class = 'mypackage:MySpawner'

previously required.
Additionally, configurable attributes for your spawner will
appear in jupyterhub help output and auto-generated configuration files
via jupyterhub --generate-config.

Environment variables and command-line arguments

Spawners mainly do one thing: launch a command in an environment.

The command-line is constructed from user configuration:

	Spawner.cmd (default: ['jupterhub-singleuser'])

	Spawner.args (cli args to pass to the cmd, default: empty)

where the configuration:

c.Spawner.cmd = ["my-singleuser-wrapper"]
c.Spawner.args = ["--debug", "--flag"]

would result in spawning the command:

my-singleuser-wrapper --debug --flag

The Spawner.get_args() method is how Spawner.args is accessed,
and can be used by Spawners to customize/extend user-provided arguments.

Prior to 2.0, JupyterHub unconditionally added certain options if specified to the command-line,
such as --ip={Spawner.ip} and --port={Spawner.port}.
These have now all been moved to environment variables,
and from JupyterHub 2.0,
the command-line launched by JupyterHub is fully specified by overridable configuration Spawner.cmd + Spawner.args.

Most process configuration is passed via environment variables.
Additional variables can be specified via the Spawner.environment configuration.

The process environment is returned by Spawner.get_env, which specifies the following environment variables:

	JUPYTERHUBSERVICE_URL - the _bind url where the server should launch its http server (http://127.0.0.1:12345).
This includes Spawner.ip and Spawner.port; new in 2.0, prior to 2.0 ip,port were on the command-line and only if specified

	JUPYTERHUB_SERVICE_PREFIX - the URL prefix the service will run on (e.g. /user/name/)

	JUPYTERHUB_USER - the JupyterHub user’s username

	JUPYTERHUB_SERVER_NAME - the server’s name, if using named servers (default server has an empty name)

	JUPYTERHUB_API_URL - the full url for the JupyterHub API (http://17.0.0.1:8001/hub/api)

	JUPYTERHUB_BASE_URL - the base url of the whole jupyterhub deployment, i.e. the bit before hub/ or user/,
as set by c.JupyterHub.base_url (default: /)

	JUPYTERHUB_API_TOKEN - the API token the server can use to make requests to the Hub.
This is also the OAuth client secret.

	JUPYTERHUB_CLIENT_ID - the OAuth client ID for authenticating visitors.

	JUPYTERHUB_OAUTH_CALLBACK_URL - the callback URL to use in oauth, typically /user/:name/oauth_callback

Optional environment variables, depending on configuration:

	JUPYTERHUBSSL[KEYFILE|CERTFILE|CLIENT_CI] - SSL configuration, when internal_ssl is enabled

	JUPYTERHUB_ROOT_DIR - the root directory of the server (notebook directory), when Spawner.notebook_dir is defined (new in 2.0)

	JUPYTERHUB_DEFAULT_URL - the default URL for the server (for redirects from /user/:name/),
if Spawner.default_url is defined
(new in 2.0, previously passed via cli)

	JUPYTERHUB_DEBUG=1 - generic debug flag, sets maximum log level when Spawner.debug is True
(new in 2.0, previously passed via cli)

	JUPYTERHUB_DISABLE_USER_CONFIG=1 - disable loading user config,
sets maximum log level when Spawner.debug is True (new in 2.0,
previously passed via cli)

	JUPYTERHUB*[MEM|CPU]*[LIMIT_GUARANTEE] - the values of cpu and memory limits and guarantees.
These are not expected to be enforced by the process,
but are made available as a hint,
e.g. for resource monitoring extensions.

Spawners, resource limits, and guarantees (Optional)

Some spawners of the single-user notebook servers allow setting limits or
guarantees on resources, such as CPU and memory. To provide a consistent
experience for sysadmins and users, we provide a standard way to set and
discover these resource limits and guarantees, such as for memory and CPU.
For the limits and guarantees to be useful, the spawner must implement
support for them. For example, LocalProcessSpawner, the default
spawner, does not support limits and guarantees. One of the spawners
that supports limits and guarantees is the systemdspawner.

Memory Limits & Guarantees

c.Spawner.mem_limit: A limit specifies the maximum amount of memory
that may be allocated, though there is no promise that the maximum amount will
be available. In supported spawners, you can set c.Spawner.mem_limit to
limit the total amount of memory that a single-user notebook server can
allocate. Attempting to use more memory than this limit will cause errors. The
single-user notebook server can discover its own memory limit by looking at
the environment variable MEM_LIMIT, which is specified in absolute bytes.

c.Spawner.mem_guarantee: Sometimes, a guarantee of a minimum amount of
memory is desirable. In this case, you can set c.Spawner.mem_guarantee to
to provide a guarantee that at minimum this much memory will always be
available for the single-user notebook server to use. The environment variable
MEM_GUARANTEE will also be set in the single-user notebook server.

The spawner’s underlying system or cluster is responsible for enforcing these
limits and providing these guarantees. If these values are set to None, no
limits or guarantees are provided, and no environment values are set.

CPU Limits & Guarantees

c.Spawner.cpu_limit: In supported spawners, you can set
c.Spawner.cpu_limit to limit the total number of cpu-cores that a
single-user notebook server can use. These can be fractional - 0.5 means 50%
of one CPU core, 4.0 is 4 cpu-cores, etc. This value is also set in the
single-user notebook server’s environment variable CPU_LIMIT. The limit does
not claim that you will be able to use all the CPU up to your limit as other
higher priority applications might be taking up CPU.

c.Spawner.cpu_guarantee: You can set c.Spawner.cpu_guarantee to provide a
guarantee for CPU usage. The environment variable CPU_GUARANTEE will be set
in the single-user notebook server when a guarantee is being provided.

The spawner’s underlying system or cluster is responsible for enforcing these
limits and providing these guarantees. If these values are set to None, no
limits or guarantees are provided, and no environment values are set.

Encryption

Communication between the Proxy, Hub, and Notebook can be secured by
turning on internal_ssl in jupyterhub_config.py. For a custom spawner to
utilize these certs, there are two methods of interest on the base Spawner
class: .create_certs and .move_certs.

The first method, .create_certs will sign a key-cert pair using an internally
trusted authority for notebooks. During this process, .create_certs can
apply ip and dns name information to the cert via an alt_names kwarg.
This is used for certificate authentication (verification). Without proper
verification, the Notebook will be unable to communicate with the Hub and
vice versa when internal_ssl is enabled. For example, given a deployment
using the DockerSpawner which will start containers with ips from the
docker subnet pool, the DockerSpawner would need to instead choose a
container ip prior to starting and pass that to .create_certs (TODO: edit).

In general though, this method will not need to be changed and the default
ip/dns (localhost) info will suffice.

When .create_certs is run, it will .create_certs in a default, central
location specified by c.JupyterHub.internal_certs_location. For Spawners
that need access to these certs elsewhere (i.e. on another host altogether),
the .move_certs method can be overridden to move the certs appropriately.
Again, using DockerSpawner as an example, this would entail moving certs
to a directory that will get mounted into the container this spawner starts.

Services

Definition of a Service

When working with JupyterHub, a Service is defined as a process that interacts
with the Hub’s REST API. A Service may perform a specific
action or task. For example, the following tasks can each be a unique Service:

	shutting down individuals’ single user notebook servers that have been idle
for some time

	registering additional web servers which should use the Hub’s authentication
and be served behind the Hub’s proxy.

Two key features help define a Service:

	Is the Service managed by JupyterHub?

	Does the Service have a web server that should be added to the proxy’s
table?

Currently, these characteristics distinguish two types of Services:

	A Hub-Managed Service which is managed by JupyterHub

	An Externally-Managed Service which runs its own web server and
communicates operation instructions via the Hub’s API.

Properties of a Service

A Service may have the following properties:

	name: str - the name of the service

	admin: bool (default - false) - whether the service should have
administrative privileges

	url: str (default - None) - The URL where the service is/should be. If a
url is specified for where the Service runs its own web server,
the service will be added to the proxy at /services/:name

	api_token: str (default - None) - For Externally-Managed Services you need to specify
an API token to perform API requests to the Hub

If a service is also to be managed by the Hub, it has a few extra options:

	command: (str/Popen list) - Command for JupyterHub to spawn the service. - Only use this if the service should be a subprocess. - If command is not specified, the Service is assumed to be managed
externally. - If a command is specified for launching the Service, the Service will
be started and managed by the Hub.

	environment: dict - additional environment variables for the Service.

	user: str - the name of a system user to manage the Service. If
unspecified, run as the same user as the Hub.

Hub-Managed Services

A Hub-Managed Service is started by the Hub, and the Hub is responsible
for the Service’s actions. A Hub-Managed Service can only be a local
subprocess of the Hub. The Hub will take care of starting the process and
restarts it if it stops.

While Hub-Managed Services share some similarities with notebook Spawners,
there are no plans for Hub-Managed Services to support the same spawning
abstractions as a notebook Spawner.

If you wish to run a Service in a Docker container or other deployment
environments, the Service can be registered as an
Externally-Managed Service, as described below.

Launching a Hub-Managed Service

A Hub-Managed Service is characterized by its specified command for launching
the Service. For example, a ‘cull idle’ notebook server task configured as a
Hub-Managed Service would include:

	the Service name,

	admin permissions, and

	the command to launch the Service which will cull idle servers after a
timeout interval

This example would be configured as follows in jupyterhub_config.py:

c.JupyterHub.load_roles = [
 {
 "name": "idle-culler",
 "scopes": [
 "read:users:activity", # read user last_activity
 "servers", # start and stop servers
 # 'admin:users' # needed if culling idle users as well
]
 }

c.JupyterHub.services = [
 {
 'name': 'idle-culler',
 'command': [sys.executable, '-m', 'jupyterhub_idle_culler', '--timeout=3600']
 }
]

A Hub-Managed Service may also be configured with additional optional
parameters, which describe the environment needed to start the Service process:

	environment: dict - additional environment variables for the Service.

	user: str - name of the user to run the server if different from the Hub.
Requires Hub to be root.

	cwd: path directory in which to run the Service, if different from the
Hub directory.

The Hub will pass the following environment variables to launch the Service:

JUPYTERHUB_SERVICE_NAME: The name of the service
JUPYTERHUB_API_TOKEN: API token assigned to the service
JUPYTERHUB_API_URL: URL for the JupyterHub API (default, http://127.0.0.1:8080/hub/api)
JUPYTERHUB_BASE_URL: Base URL of the Hub (https://mydomain[:port]/)
JUPYTERHUB_SERVICE_PREFIX: URL path prefix of this service (/services/:service-name/)
JUPYTERHUB_SERVICE_URL: Local URL where the service is expected to be listening.
 Only for proxied web services.
JUPYTERHUB_OAUTH_SCOPES: JSON-serialized list of scopes to use for allowing access to the service.

For the previous ‘cull idle’ Service example, these environment variables
would be passed to the Service when the Hub starts the ‘cull idle’ Service:

JUPYTERHUB_SERVICE_NAME: 'idle-culler'
JUPYTERHUB_API_TOKEN: API token assigned to the service
JUPYTERHUB_API_URL: http://127.0.0.1:8080/hub/api
JUPYTERHUB_BASE_URL: https://mydomain[:port]
JUPYTERHUB_SERVICE_PREFIX: /services/idle-culler/

See the GitHub repo for additional information about the jupyterhub_idle_culler [https://github.com/jupyterhub/jupyterhub-idle-culler].

Externally-Managed Services

You may prefer to use your own service management tools, such as Docker or
systemd, to manage a JupyterHub Service. These Externally-Managed
Services, unlike Hub-Managed Services, are not subprocesses of the Hub. You
must tell JupyterHub which API token the Externally-Managed Service is using
to perform its API requests. Each Externally-Managed Service will need a
unique API token, because the Hub authenticates each API request and the API
token is used to identify the originating Service or user.

A configuration example of an Externally-Managed Service with admin access and
running its own web server is:

c.JupyterHub.services = [
 {
 'name': 'my-web-service',
 'url': 'https://10.0.1.1:1984',
 # any secret >8 characters, you'll use api_token to
 # authenticate api requests to the hub from your service
 'api_token': 'super-secret',
 }
]

In this case, the url field will be passed along to the Service as
JUPYTERHUB_SERVICE_URL.

Writing your own Services

When writing your own services, you have a few decisions to make (in addition
to what your service does!):

	Does my service need a public URL?

	Do I want JupyterHub to start/stop the service?

	Does my service need to authenticate users?

When a Service is managed by JupyterHub, the Hub will pass the necessary
information to the Service via the environment variables described above. A
flexible Service, whether managed by the Hub or not, can make use of these
same environment variables.

When you run a service that has a url, it will be accessible under a
/services/ prefix, such as https://myhub.horse/services/my-service/. For
your service to route proxied requests properly, it must take
JUPYTERHUB_SERVICE_PREFIX into account when routing requests. For example, a
web service would normally service its root handler at '/', but the proxied
service would need to serve JUPYTERHUB_SERVICE_PREFIX.

Note that JUPYTERHUB_SERVICE_PREFIX will contain a trailing slash. This must
be taken into consideration when creating the service routes. If you include an
extra slash you might get unexpected behavior. For example if your service has a
/foo endpoint, the route would be JUPYTERHUB_SERVICE_PREFIX + foo, and
/foo/bar would be JUPYTERHUB_SERVICE_PREFIX + foo/bar.

Hub Authentication and Services

JupyterHub provides some utilities for using the Hub’s authentication
mechanism to govern access to your service.

Requests to all JupyterHub services are made with OAuth tokens.
These can either be requests with a token in the Authorization header,
or url parameter ?token=...,
or browser requests which must complete the OAuth authorization code flow,
which results in a token that should be persisted for future requests
(persistence is up to the service,
but an encrypted cookie confined to the service path is appropriate,
and provided by default).

Changed in version 2.0: The shared jupyterhub-services cookie is removed.
OAuth must be used to authenticate browser requests with services.

JupyterHub includes a reference implementation of Hub authentication that
can be used by services. You may go beyond this reference implementation and
create custom hub-authenticating clients and services. We describe the process
below.

The reference, or base, implementation is the HubAuth class,
which implements the API requests to the Hub that resolve a token to a User model.

There are two levels of authentication with the Hub:

	HubAuth - the most basic authentication,
for services that should only accept API requests authorized with a token.

	HubOAuth - For services that should use oauth to authenticate with the Hub.
This should be used for any service that serves pages that should be visited with a browser.

To use HubAuth, you must set the .api_token, either programmatically when constructing the class,
or via the JUPYTERHUB_API_TOKEN environment variable.

Most of the logic for authentication implementation is found in the
HubAuth.user_for_token
methods, which makes a request of the Hub, and returns:

	None, if no user could be identified, or

	a dict of the following form:

{
 "name": "username",
 "groups": ["list", "of", "groups"],
 "scopes": [
 "access:users:servers!server=username/",
],
}

You are then free to use the returned user information to take appropriate
action.

HubAuth also caches the Hub’s response for a number of seconds,
configurable by the cookie_cache_max_age setting (default: five minutes).

Flask Example

For example, you have a Flask service that returns information about a user.
JupyterHub’s HubAuth class can be used to authenticate requests to the Flask
service. See the service-whoami-flask example in the
JupyterHub GitHub repo [https://github.com/jupyterhub/jupyterhub/tree/HEAD/examples/service-whoami-flask]
for more details.

#!/usr/bin/env python3
"""
whoami service authentication with the Hub
"""
import json
import os
import secrets
from functools import wraps

from flask import Flask
from flask import make_response
from flask import redirect
from flask import request
from flask import Response
from flask import session

from jupyterhub.services.auth import HubOAuth

prefix = os.environ.get('JUPYTERHUB_SERVICE_PREFIX', '/')

auth = HubOAuth(api_token=os.environ['JUPYTERHUB_API_TOKEN'], cache_max_age=60)

app = Flask(__name__)
encryption key for session cookies
app.secret_key = secrets.token_bytes(32)

def authenticated(f):
 """Decorator for authenticating with the Hub via OAuth"""

 @wraps(f)
 def decorated(*args, **kwargs):
 token = session.get("token")

 if token:
 user = auth.user_for_token(token)
 else:
 user = None

 if user:
 return f(user, *args, **kwargs)
 else:
 # redirect to login url on failed auth
 state = auth.generate_state(next_url=request.path)
 response = make_response(redirect(auth.login_url + '&state=%s' % state))
 response.set_cookie(auth.state_cookie_name, state)
 return response

 return decorated

@app.route(prefix)
@authenticated
def whoami(user):
 return Response(
 json.dumps(user, indent=1, sort_keys=True), mimetype='application/json'
)

@app.route(prefix + 'oauth_callback')
def oauth_callback():
 code = request.args.get('code', None)
 if code is None:
 return 403

 # validate state field
 arg_state = request.args.get('state', None)
 cookie_state = request.cookies.get(auth.state_cookie_name)
 if arg_state is None or arg_state != cookie_state:
 # state doesn't match
 return 403

 token = auth.token_for_code(code)
 # store token in session cookie
 session["token"] = token
 next_url = auth.get_next_url(cookie_state) or prefix
 response = make_response(redirect(next_url))
 return response

Authenticating tornado services with JupyterHub

Since most Jupyter services are written with tornado,
we include a mixin class, HubOAuthenticated,
for quickly authenticating your own tornado services with JupyterHub.

Tornado’s authenticated() [https://www.tornadoweb.org/en/stable/web.html#tornado.web.authenticated] decorator calls a Handler’s get_current_user() [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler.get_current_user]
method to identify the user. Mixing in HubAuthenticated defines
get_current_user() to use HubAuth. If you want to configure the HubAuth
instance beyond the default, you’ll want to define an initialize() [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler.initialize] method,
such as:

class MyHandler(HubOAuthenticated, web.RequestHandler):

 def initialize(self, hub_auth):
 self.hub_auth = hub_auth

 @web.authenticated
 def get(self):
 ...

The HubAuth class will automatically load the desired configuration from the Service
environment variables.

Changed in version 2.0: Access scopes are used to govern access to services.
Prior to 2.0,
sets of users and groups could be used to grant access
by defining .hub_groups or .hub_users on the authenticated handler.
These are ignored if the 2.0 .hub_scopes is defined.

See also

HubAuth.check_scopes()

Implementing your own Authentication with JupyterHub

If you don’t want to use the reference implementation
(e.g. you find the implementation a poor fit for your Flask app),
you can implement authentication via the Hub yourself.
JupyterHub is a standard OAuth2 provider,
so you can use any OAuth 2 client implementation appropriate for your toolkit.
See the FastAPI example [https://github.com/jupyterhub/jupyterhub/tree/HEAD/examples/service-fastapi] for an example of using JupyterHub as an OAuth provider with FastAPI [https://fastapi.tiangolo.com],
without using any code imported from JupyterHub.

On completion of OAuth, you will have an access token for JupyterHub,
which can be used to identify the user and the permissions (scopes)
the user has authorized for your service.

You will only get to this stage if the user has the required access:services!service=$service-name scope.

To retrieve the user model for the token, make a request to GET /hub/api/user with the token in the Authorization header.
For example, using flask:

#!/usr/bin/env python3
"""
whoami service authentication with the Hub
"""
import json
import os
import secrets
from functools import wraps

from flask import Flask
from flask import make_response
from flask import redirect
from flask import request
from flask import Response
from flask import session

from jupyterhub.services.auth import HubOAuth

prefix = os.environ.get('JUPYTERHUB_SERVICE_PREFIX', '/')

auth = HubOAuth(api_token=os.environ['JUPYTERHUB_API_TOKEN'], cache_max_age=60)

app = Flask(__name__)
encryption key for session cookies
app.secret_key = secrets.token_bytes(32)

def authenticated(f):
 """Decorator for authenticating with the Hub via OAuth"""

 @wraps(f)
 def decorated(*args, **kwargs):
 token = session.get("token")

 if token:
 user = auth.user_for_token(token)
 else:
 user = None

 if user:
 return f(user, *args, **kwargs)
 else:
 # redirect to login url on failed auth
 state = auth.generate_state(next_url=request.path)
 response = make_response(redirect(auth.login_url + '&state=%s' % state))
 response.set_cookie(auth.state_cookie_name, state)
 return response

 return decorated

@app.route(prefix)
@authenticated
def whoami(user):
 return Response(
 json.dumps(user, indent=1, sort_keys=True), mimetype='application/json'
)

@app.route(prefix + 'oauth_callback')
def oauth_callback():
 code = request.args.get('code', None)
 if code is None:
 return 403

 # validate state field
 arg_state = request.args.get('state', None)
 cookie_state = request.cookies.get(auth.state_cookie_name)
 if arg_state is None or arg_state != cookie_state:
 # state doesn't match
 return 403

 token = auth.token_for_code(code)
 # store token in session cookie
 session["token"] = token
 next_url = auth.get_next_url(cookie_state) or prefix
 response = make_response(redirect(next_url))
 return response

We recommend looking at the HubOAuth class implementation for reference,
and taking note of the following process:

	retrieve the token from the request.

	Make an API request GET /hub/api/user,
with the token in the Authorization header.

For example, with requests [http://docs.python-requests.org/en/master/]:

r = requests.get(
 "http://127.0.0.1:8081/hub/api/user",
 headers = {
 'Authorization' : f'token {api_token}',
 },
)
r.raise_for_status()
user = r.json()

	On success, the reply will be a JSON model describing the user:

{
 "name": "inara",
 # groups may be omitted, depending on permissions
 "groups": ["serenity", "guild"],
 # scopes is new in JupyterHub 2.0
 "scopes": [
 "access:services",
 "read:users:name",
 "read:users!user=inara",
 "..."
]
}

The scopes field can be used to manage access.
Note: a user will have access to a service to complete oauth access to the service for the first time.
Individual permissions may be revoked at any later point without revoking the token,
in which case the scopes field in this model should be checked on each access.
The default required scopes for access are available from hub_auth.oauth_scopes or $JUPYTERHUB_OAUTH_SCOPES.

An example of using an Externally-Managed Service and authentication is
in nbviewer README [https://github.com/jupyter/nbviewer#securing-the-notebook-viewer] section on securing the notebook viewer,
and an example of its configuration is found here [https://github.com/jupyter/nbviewer/blob/ed942b10a52b6259099e2dd687930871dc8aac22/nbviewer/providers/base.py#L95].
nbviewer can also be run as a Hub-Managed Service as described nbviewer README [https://github.com/jupyter/nbviewer#securing-the-notebook-viewer]
section on securing the notebook viewer.

Writing a custom Proxy implementation

JupyterHub 0.8 introduced the ability to write a custom implementation of the
proxy. This enables deployments with different needs than the default proxy,
configurable-http-proxy (CHP). CHP is a single-process nodejs proxy that the
Hub manages by default as a subprocess (it can be run externally, as well, and
typically is in production deployments).

The upside to CHP, and why we use it by default, is that it’s easy to install
and run (if you have nodejs, you are set!). The downsides are that it’s a
single process and does not support any persistence of the routing table. So
if the proxy process dies, your whole JupyterHub instance is inaccessible
until the Hub notices, restarts the proxy, and restores the routing table. For
deployments that want to avoid such a single point of failure, or leverage
existing proxy infrastructure in their chosen deployment (such as Kubernetes
ingress objects), the Proxy API provides a way to do that.

In general, for a proxy to be usable by JupyterHub, it must:

	support websockets without prior knowledge of the URL where websockets may
occur

	support trie-based routing (i.e. allow different routes on /foo and
/foo/bar and route based on specificity)

	adding or removing a route should not cause existing connections to drop

Optionally, if the JupyterHub deployment is to use host-based routing,
the Proxy must additionally support routing based on the Host of the request.

Subclassing Proxy

To start, any Proxy implementation should subclass the base Proxy class,
as is done with custom Spawners and Authenticators.

from jupyterhub.proxy import Proxy

class MyProxy(Proxy):
 """My Proxy implementation"""
 ...

Starting and stopping the proxy

If your proxy should be launched when the Hub starts, you must define how
to start and stop your proxy:

class MyProxy(Proxy):
 ...
 async def start(self):
 """Start the proxy"""

 async def stop(self):
 """Stop the proxy"""

These methods may be coroutines.

c.Proxy.should_start is a configurable flag that determines whether the
Hub should call these methods when the Hub itself starts and stops.

Encryption

When using internal_ssl to encrypt traffic behind the proxy, at minimum,
your Proxy will need client ssl certificates which the Hub must be made
aware of. These can be generated with the command jupyterhub --generate-certs
which will write them to the internal_certs_location in folders named
proxy_api and proxy_client. Alternatively, these can be provided to the
hub via the jupyterhub_config.py file by providing a dict of named paths
to the external_authorities option. The hub will include all certificates
provided in that dict in the trust bundle utilized by all internal
components.

Purely external proxies

Probably most custom proxies will be externally managed,
such as Kubernetes ingress-based implementations.
In this case, you do not need to define start and stop.
To disable the methods, you can define should_start = False at the class level:

class MyProxy(Proxy):
 should_start = False

Routes

At its most basic, a Proxy implementation defines a mechanism to add, remove,
and retrieve routes. A proxy that implements these three methods is complete.
Each of these methods may be a coroutine.

Definition: routespec

A routespec, which will appear in these methods, is a string describing a
route to be proxied, such as /user/name/. A routespec will:

	always end with /

	always start with / if it is a path-based route /proxy/path/

	precede the leading / with a host for host-based routing, e.g.
host.tld/proxy/path/

Adding a route

When adding a route, JupyterHub may pass a JSON-serializable dict as a data
argument that should be attached to the proxy route. When that route is
retrieved, the data argument should be returned as well. If your proxy
implementation doesn’t support storing data attached to routes, then your
Python wrapper may have to handle storing the data piece itself, e.g in a
simple file or database.

async def add_route(self, routespec, target, data):
 """Proxy `routespec` to `target`.

 Store `data` associated with the routespec
 for retrieval later.
 """

Adding a route for a user looks like this:

await proxy.add_route('/user/pgeorgiou/', 'http://127.0.0.1:1227',
 {'user': 'pgeorgiou'})

Removing routes

delete_route() is given a routespec to delete. If there is no such route,
delete_route should still succeed, but a warning may be issued.

async def delete_route(self, routespec):
 """Delete the route"""

Retrieving routes

For retrieval, you only need to implement a single method that retrieves all
routes. The return value for this function should be a dictionary, keyed by
routespect, of dicts whose keys are the same three arguments passed to
add_route (routespec, target, data)

async def get_all_routes(self):
 """Return all routes, keyed by routespec"""

{
 '/proxy/path/': {
 'routespec': '/proxy/path/',
 'target': 'http://...',
 'data': {},
 },
}

Note on activity tracking

JupyterHub can track activity of users, for use in services such as culling
idle servers. As of JupyterHub 0.8, this activity tracking is the
responsibility of the proxy. If your proxy implementation can track activity
to endpoints, it may add a last_activity key to the data of routes
retrieved in .get_all_routes(). If present, the value of last_activity
should be an ISO8601 [https://en.wikipedia.org/wiki/ISO_8601] UTC date
string:

{
 '/user/pgeorgiou/': {
 'routespec': '/user/pgeorgiou/',
 'target': 'http://127.0.0.1:1227',
 'data': {
 'user': 'pgeourgiou',
 'last_activity': '2017-10-03T10:33:49.570Z',
 },
 },
}

If the proxy does not track activity, then only activity to the Hub itself is
tracked, and services such as cull-idle will not work.

Now that notebook-5.0 tracks activity internally, we can retrieve activity
information from the single-user servers instead, removing the need to track
activity in the proxy. But this is not yet implemented in JupyterHub 0.8.0.

Registering custom Proxies via entry points

As of JupyterHub 1.0, custom proxy implementations can register themselves via
the jupyterhub.proxies entry point metadata.
To do this, in your setup.py add:

setup(
 ...
 entry_points={
 'jupyterhub.proxies': [
 'mything = mypackage:MyProxy',
],
 },
)

If you have added this metadata to your package,
users can select your proxy with the configuration:

c.JupyterHub.proxy_class = 'mything'

instead of the full

c.JupyterHub.proxy_class = 'mypackage:MyProxy'

previously required.
Additionally, configurable attributes for your proxy will
appear in jupyterhub help output and auto-generated configuration files
via jupyterhub --generate-config.

Index of proxies

A list of the proxies that are currently available for JupyterHub (that we know about).

	jupyterhub/configurable-http-proxy [https://github.com/jupyterhub/configurable-http-proxy] The default proxy which uses node-http-proxy

	jupyterhub/traefik-proxy [https://github.com/jupyterhub/traefik-proxy] The proxy which configures traefik proxy server for jupyterhub

	AbdealiJK/configurable-http-proxy [https://github.com/AbdealiJK/configurable-http-proxy] A pure python implementation of the configurable-http-proxy

Running proxy separately from the hub

Background

The thing which users directly connect to is the proxy, by default
configurable-http-proxy. The proxy either redirects users to the
hub (for login and managing servers), or to their own single-user
servers. Thus, as long as the proxy stays running, access to existing
servers continues, even if the hub itself restarts or goes down.

When you first configure the hub, you may not even realize this
because the proxy is automatically managed by the hub. This is great
for getting started and even most use, but everytime you restart the
hub, all user connections also get restarted. But it’s also simple to
run the proxy as a service separate from the hub, so that you are free
to reconfigure the hub while only interrupting users who are currently
actively starting the hub.

The default JupyterHub proxy is
configurable-http-proxy [https://github.com/jupyterhub/configurable-http-proxy],
and that page has some docs. If you are using a different proxy, such
as Traefik, these instructions are probably not relevant to you.

Configuration options

c.JupyterHub.cleanup_servers = False should be set, which tells the
hub to not stop servers when the hub restarts (this is useful even if
you don’t run the proxy separately).

c.ConfigurableHTTPProxy.should_start = False should be set, which
tells the hub that the proxy should not be started (because you start
it yourself).

c.ConfigurableHTTPProxy.auth_token = "CONFIGPROXY_AUTH_TOKEN" should be set to a
token for authenticating communication with the proxy.

c.ConfigurableHTTPProxy.api_url = 'http://localhost:8001' should be
set to the URL which the hub uses to connect to the proxy’s API.

Proxy configuration

You need to configure a service to start the proxy. An example
command line for this is configurable-http-proxy --ip=127.0.0.1 --port=8000 --api-ip=127.0.0.1 --api-port=8001 --default-target=http://localhost:8081 --error-target=http://localhost:8081/hub/error. (Details for how to
do this is out of scope for this tutorial - for example it might be a
systemd service on within another docker cotainer). The proxy has no
configuration files, all configuration is via the command line and
environment variables.

--api-ip and --api-port (which tells the proxy where to listen) should match the hub’s ConfigurableHTTPProxy.api_url.

--ip, -port, and other options configure the user connections to the proxy.

--default-target and --error-target should point to the hub, and used when users navigate to the proxy originally.

You must define the environment variable CONFIGPROXY_AUTH_TOKEN to
match the token given to c.ConfigurableHTTPProxy.auth_token.

You should check the configurable-http-proxy
options [https://github.com/jupyterhub/configurable-http-proxy] to see
what other options are needed, for example SSL options. Note that
these are configured in the hub if the hub is starting the proxy - you
need to move the options to here.

Docker image

You can use jupyterhub configurable-http-proxy docker
image [https://hub.docker.com/r/jupyterhub/configurable-http-proxy/]
to run the proxy.

See also

	jupyterhub configurable-http-proxy [https://github.com/jupyterhub/configurable-http-proxy]

Using JupyterHub’s REST API

This section will give you information on:

	what you can do with the API

	create an API token

	add API tokens to the config files

	make an API request programmatically using the requests library

	learn more about JupyterHub’s API

What you can do with the API

Using the JupyterHub REST API, you can perform actions on the Hub,
such as:

	checking which users are active

	adding or removing users

	stopping or starting single user notebook servers

	authenticating services

	communicating with an individual Jupyter server’s REST API

A REST [https://en.wikipedia.org/wiki/Representational_state_transfer]
API provides a standard way for users to get and send information to the
Hub.

Create an API token

To send requests using JupyterHub API, you must pass an API token with
the request.

The preferred way of generating an API token is:

openssl rand -hex 32

This openssl command generates a potential token that can then be
added to JupyterHub using .api_tokens configuration setting in
jupyterhub_config.py.

Alternatively, use the jupyterhub token command to generate a token
for a specific hub user by passing the ‘username’:

jupyterhub token <username>

This command generates a random string to use as a token and registers
it for the given user with the Hub’s database.

In version 0.8.0, a token request page for
generating an API token is available from the JupyterHub user interface:

[image: Request API token page]

[image: API token success page]

Assigning permissions to a token

Prior to JupyterHub 2.0, there were two levels of permissions:

	user, and

	admin

where a token would always have full permissions to do whatever its owner could do.

In JupyterHub 2.0,
specific permissions are now defined as ‘scopes’,
and can be assigned both at the user/service level,
and at the individual token level.

This allows e.g. a user with full admin permissions to request a token with limited permissions.

Updating to admin services

The api_tokens configuration has been softly deprecated since the introduction of services.
We have no plans to remove it,
but deployments are encouraged to use service configuration instead.

If you have been using api_tokens to create an admin user
and a token for that user to perform some automations,
the services mechanism may be a better fit.
If you have the following configuration:

c.JupyterHub.admin_users = {"service-admin",}
c.JupyterHub.api_tokens = {
 "secret-token": "service-admin",
}

This can be updated to create a service, with the following configuration:

c.JupyterHub.services = [
 {
 # give the token a name
 "name": "service-admin",
 "api_token": "secret-token",
 # "admin": True, # if using JupyterHub 1.x
 },
]

roles are new in JupyterHub 2.0
prior to 2.0, only 'admin': True or False
was available

c.JupyterHub.load_roles = [
 {
 "name": "service-role",
 "scopes": [
 # specify the permissions the token should have
 "admin:users",
 "admin:services",
],
 "services": [
 # assign the service the above permissions
 "service-admin",
],
 }
]

The token will have the permissions listed in the role
(see [scopes][] for a list of available permissions),
but there will no longer be a user account created to house it.
The main noticeable difference is that there will be no notebook server associated with the account
and the service will not show up in the various user list pages and APIs.

Make an API request

To authenticate your requests, pass the API token in the request’s
Authorization header.

Use requests

Using the popular Python requests [https://docs.python-requests.org]
library, here’s example code to make an API request for the users of a JupyterHub
deployment. An API GET request is made, and the request sends an API token for
authorization. The response contains information about the users:

import requests

api_url = 'http://127.0.0.1:8081/hub/api'

r = requests.get(api_url + '/users',
 headers={
 'Authorization': f'token {token}',
 }
)

r.raise_for_status()
users = r.json()

This example provides a slightly more complicated request, yet the
process is very similar:

import requests

api_url = 'http://127.0.0.1:8081/hub/api'

data = {'name': 'mygroup', 'users': ['user1', 'user2']}

r = requests.post(api_url + '/groups/formgrade-data301/users',
 headers={
 'Authorization': f'token {token}',
 },
 json=data,
)
r.raise_for_status()
r.json()

The same API token can also authorize access to the Jupyter Notebook REST API [https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/jupyter/notebook/HEAD/notebook/services/api/api.yaml]
provided by notebook servers managed by JupyterHub if it has the necessary access:users:servers scope:

Paginating API requests

New in version 2.0.

Pagination is available through the offset and limit query parameters on
list endpoints, which can be used to return ideally sized windows of results.
Here’s example code demonstrating pagination on the GET /users
endpoint to fetch the first 20 records.

import os
import requests

api_url = 'http://127.0.0.1:8081/hub/api'

r = requests.get(
 api_url + '/users?offset=0&limit=20',
 headers={
 "Accept": "application/jupyterhub-pagination+json",
 "Authorization": f"token {token}",
 },
)
r.raise_for_status()
r.json()

For backward-compatibility, the default structure of list responses is unchanged.
However, this lacks pagination information (e.g. is there a next page),
so if you have enough users that they won’t fit in the first response,
it is a good idea to opt-in to the new paginated list format.
There is a new schema for list responses which include pagination information.
You can request this by including the header:

Accept: application/jupyterhub-pagination+json

with your request, in which case a response will look like:

{
 "items": [
 {
 "name": "username",
 "kind": "user",
 ...
 },
],
 "_pagination": {
 "offset": 0,
 "limit": 20,
 "total": 50,
 "next": {
 "offset": 20,
 "limit": 20,
 "url": "http://127.0.0.1:8081/hub/api/users?limit=20&offset=20"
 }
 }
}

where the list results (same as pre-2.0) will be in items,
and pagination info will be in _pagination.
The next field will include the offset, limit, and URL for requesting the next page.
next will be null if there is no next page.

Pagination is governed by two configuration options:

	JupyterHub.api_page_default_limit - the page size, if limit is unspecified in the request
and the new pagination API is requested
(default: 50)

	JupyterHub.api_page_max_limit - the maximum page size a request can ask for (default: 200)

Pagination is enabled on the GET /users, GET /groups, and GET /proxy REST endpoints.

Enabling users to spawn multiple named-servers via the API

With JupyterHub version 0.8, support for multiple servers per user has landed.
Prior to that, each user could only launch a single default server via the API
like this:

curl -X POST -H "Authorization: token <token>" "http://127.0.0.1:8081/hub/api/users/<user>/server"

With the named-server functionality, it’s now possible to launch more than one
specifically named servers against a given user. This could be used, for instance,
to launch each server based on a different image.

First you must enable named-servers by including the following setting in the jupyterhub_config.py file.

c.JupyterHub.allow_named_servers = True

If using the zero-to-jupyterhub-k8s [https://github.com/jupyterhub/zero-to-jupyterhub-k8s] set-up to run JupyterHub,
then instead of editing the jupyterhub_config.py file directly, you could pass
the following as part of the config.yaml file, as per the tutorial [https://zero-to-jupyterhub.readthedocs.io/en/latest/]:

hub:
 extraConfig: |
 c.JupyterHub.allow_named_servers = True

With that setting in place, a new named-server is activated like this:

curl -X POST -H "Authorization: token <token>" "http://127.0.0.1:8081/hub/api/users/<user>/servers/<serverA>"
curl -X POST -H "Authorization: token <token>" "http://127.0.0.1:8081/hub/api/users/<user>/servers/<serverB>"

The same servers can be stopped by substituting DELETE for POST above.

Some caveats for using named-servers

For named-servers via the API to work, the spawner used to spawn these servers
will need to be able to handle the case of multiple servers per user and ensure
uniqueness of names, particularly if servers are spawned via docker containers
or kubernetes pods.

Learn more about the API

You can see the full JupyterHub REST API for details.

JupyterHub REST API

Below is an interactive view of JupyterHub’s OpenAPI specification.

 Starting servers with the JupyterHub API

Starting servers with the JupyterHub API

JupyterHub’s REST API allows launching servers on behalf of users
without ever interacting with the JupyterHub UI.
This allows you to build services launching Jupyter-based services for users
without relying on the JupyterHub UI at all,
enabling a variety of user/launch/lifecycle patterns not natively supported by JupyterHub,
without needing to develop all the server management features of JupyterHub Spawners and/or Authenticators.
BinderHub [https://binderhub.readthedocs.io] is an example of such an application.

This document provides an example of working with the JupyterHub API to
manage servers for users.
In particular, we will cover how to:

	check status of servers

	start servers

	wait for servers to be ready

	communicate with servers

	stop servers

Checking server status

Requesting information about a user includes a servers field,
which is a dictionary.

GET /hub/api/users/:username

Required scope: read:servers

{
 "admin": false,
 "groups": [],
 "pending": null,
 "server": null,
 "name": "test-1",
 "kind": "user",
 "last_activity": "2021-08-03T18:12:46.026411Z",
 "created": "2021-08-03T18:09:59.767600Z",
 "roles": ["user"],
 "servers": {}
}

If the servers dict is empty, the user has no running servers.
The keys of the servers dict are server names as strings.
Many JupyterHub deployments only use the ‘default’ server,
which has the empty string '' for a name.
In this case, the servers dict will always have either zero or one elements.

This is the servers dict when the user’s default server is fully running and ready:

 "servers": {
 "": {
 "name": "",
 "last_activity": "2021-08-03T18:48:35.934000Z",
 "started": "2021-08-03T18:48:29.093885Z",
 "pending": null,
 "ready": true,
 "url": "/user/test-1/",
 "user_options": {},
 "progress_url": "/hub/api/users/test-1/server/progress"
 }
 }

Key properties of a server:

	name
	the server’s name. Always the same as the key in servers

	ready
	boolean. If true, the server can be expected to respond to requests at url.

	pending
	null or a string indicating a transitional state (such as start or stop).
Will always be null if ready is true,
and will always be a string if ready is false.

	url
	The server’s url (just the path, e.g. /users/:name/:servername/)
where the server can be accessed if ready is true.

	progress_url
	The API url path (starting with /hub/api)
where the progress API can be used to wait for the server to be ready.
See below for more details on the progress API.

	last_activity
	ISO8601 timestamp indicating when activity was last observed on the server

	started
	ISO801 timestamp indicating when the server was last started

We’ve seen the servers model with no servers and with one ready server.
Here is what it looks like immediately after requesting a server launch,
while the server is not ready yet:

 "servers": {
 "": {
 "name": "",
 "last_activity": "2021-08-03T18:48:29.093885Z",
 "started": "2021-08-03T18:48:29.093885Z",
 "pending": "spawn",
 "ready": false,
 "url": "/user/test-1/",
 "user_options": {},
 "progress_url": "/hub/api/users/test-1/server/progress"
 }
 }

Note that ready is false and pending is spawn.
This means that the server is not ready
(attempting to access it may not work)
because it isn’t finished spawning yet.
We’ll get more into that below in waiting for a server.

Starting servers

To start a server, make the request

POST /hub/api/users/:username/servers/[:servername]

Required scope: servers

(omit servername for the default server)

Assuming the request was valid,
there are two possible responses:

	201 Created
	This status code means the launch completed and the server is ready.
It should be available at the server’s URL immediately.

	202 Accepted
	This is the more likely response,
and means that the server has begun launching,
but isn’t immediately ready.
The server has pending: 'spawn' at this point.

Aside: how quickly JupyterHub responds with 202 Accepted is governed by the slow_spawn_timeout tornado setting.

Waiting for a server

If you are starting a server via the API,
there’s a good change you want to know when it’s ready.
There are two ways to do with:

	Polling the server model

	the progress API

Polling the server model

The simplest way to check if a server is ready
is to request the user model.

If:

	the server name is in the user’s servers model, and

	servers['servername']['ready'] is true

A Python example, checking if a server is ready:

def server_ready(hub_url, user, server_name="", token):
 r = requests.get(
 f"{hub_url}/hub/api/users/{user}/servers/{server_name}",
 headers={"Authorization": f"token {token}"},
)
 r.raise_for_status()
 user_model = r.json()
 servers = user_model.get("servers", {})
 if server_name not in servers:
 return False

 server = servers[server_name]
 if server['ready']:
 print(f"Server {user}/{server_name} ready at {server['url']}")
 return True
 else:
 print(f"Server {user}/{server_name} not ready, pending {server['pending']}")
 return False

You can keep making this check until ready is true.

Progress API

The most efficient way to wait for a server to start is the progress API.

The progress URL is available in the server model under progress_url,
and has the form /hub/api/users/:user/servers/:servername/progress.

the default server progress can be accessed at :user/servers//progress or :user/server/progress

GET /hub/api/users/:user/servers/:servername/progress

Required scope: read:servers

This is an EventStream [https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#examples] API.
In an event stream, messages are streamed and delivered on lines of the form:

data: {"progress": 10, "message": "...", ...}

where the line after data: contains a JSON-serialized dictionary.
Lines that do not start with data: should be ignored.

progress events have the form:

{
 "progress": 0-100,
 "message": "",
 "ready": True, # or False

}

	progress
	integer, 0-100

	message
	string message describing progress stages

	ready
	present and true only for the last event when the server is ready

	url
	only present if ready is true; will be the server’s url

the progress API can be used even with fully ready servers.
If the server is ready,
there will only be one event that looks like:

{
 "progress": 100,
 "ready": true,
 "message": "Server ready at /user/test-1/",
 "html_message": "Server ready at /user/test-1/",
 "url": "/user/test-1/"
}

where ready and url are the same as in the server model (ready will always be true).

A typical complete stream from the event-stream API:

data: {"progress": 0, "message": "Server requested"}

data: {"progress": 50, "message": "Spawning server..."}

data: {"progress": 100, "ready": true, "message": "Server ready at /user/test-user/", "html_message": "Server ready at /user/test-user/", "url": "/user/test-user/"}

Here is a Python example for consuming an event stream:

def event_stream(session, url):
 """Generator yielding events from a JSON event stream

 For use with the server progress API
 """
 r = session.get(url, stream=True)
 r.raise_for_status()
 for line in r.iter_lines():
 line = line.decode('utf8', 'replace')
 # event lines all start with `data:`
 # all other lines should be ignored (they will be empty)
 if line.startswith('data:'):
 yield json.loads(line.split(':', 1)[1])

Stopping servers

Servers can be stopped with a DELETE request:

DELETE /hub/api/users/:user/servers/[:servername]

Required scope: servers

Like start, delete may not complete immediately.
The DELETE request has two possible response codes:

	204 Deleted
	This status code means the delete completed and the server is fully stopped.
It will now be absent from the user servers model.

	202 Accepted
	Like start, 202 means your request was accepted,
but is not yet complete.
The server has pending: 'stop' at this point.

Unlike start, there is no progress API for stop.
To wait for stop to finish, you must poll the user model
and wait for the server to disappear from the user servers model.

def stop_server(session, hub_url, user, server_name=""):
 """Stop a server via the JupyterHub API

 Returns when the server has finished stopping
 """
 # step 1: get user status
 user_url = f"{hub_url}/hub/api/users/{user}"
 server_url = f"{user_url}/servers/{server_name}"
 log_name = f"{user}/{server_name}".rstrip("/")

 log.info(f"Stopping server {log_name}")
 r = session.delete(server_url)
 if r.status_code == 404:
 log.info(f"Server {log_name} already stopped")

 r.raise_for_status()
 if r.status_code == 204:
 log.info(f"Server {log_name} stopped")
 return

 # else: 202, stop requested, but not complete
 # wait for stop to finish
 log.info(f"Server {log_name} stopping...")

 # wait for server to be done stopping
 while True:
 r = session.get(user_url)
 r.raise_for_status()
 user_model = r.json()
 if server_name not in user_model.get("servers", {}):
 log.info(f"Server {log_name} stopped")
 return
 server = user_model["servers"][server_name]
 if not server['pending']:
 raise ValueError(f"Waiting for {log_name}, but no longer pending.")
 log.info(f"Server {log_name} pending: {server['pending']}")
 # wait to poll again
 time.sleep(1)

Communicating with servers

JupyterHub tokens with the the access:servers scope
can be used to communicate with servers themselves.
This can be the same token you used to launch your service.

Note

Access scopes are new in JupyterHub 2.0.
To access servers in JupyterHub 1.x,
a token must be owned by the same user as the server,
or be an admin token if admin_access is enabled.

The URL returned from a server model is the url path suffix,
e.g. /user/:name/ to append to the jupyterhub base URL.

For instance, {hub_url}{server_url},
where hub_url would be e.g. http://127.0.0.1:8000 by default,
and server_url /user/myname,
for a full url of http://127.0.0.1:8000/user/myname.

Python example

The JupyterHub repo includes a complete example in examples/server-api
tying all this together.

To summarize the steps:

	get user info from /user/:name

	the server model includes a ready state to tell you if it’s ready

	if it’s not ready, you can follow up with progress_url to wait for it

	if it is ready, you can use the url field to link directly to the running server

The example demonstrates starting and stopping servers via the JupyterHub API,
including waiting for them to start via the progress API,
as well as waiting for them to stop via polling the user model.

def event_stream(session, url):
 """Generator yielding events from a JSON event stream

 For use with the server progress API
 """
 r = session.get(url, stream=True)
 r.raise_for_status()
 for line in r.iter_lines():
 line = line.decode('utf8', 'replace')
 # event lines all start with `data:`
 # all other lines should be ignored (they will be empty)
 if line.startswith('data:'):
 yield json.loads(line.split(':', 1)[1])

def start_server(session, hub_url, user, server_name=""):
 """Start a server for a jupyterhub user

 Returns the full URL for accessing the server
 """
 user_url = f"{hub_url}/hub/api/users/{user}"
 log_name = f"{user}/{server_name}".rstrip("/")

 # step 1: get user status
 r = session.get(user_url)
 r.raise_for_status()
 user_model = r.json()

 # if server is not 'active', request launch
 if server_name not in user_model.get('servers', {}):
 log.info(f"Starting server {log_name}")
 r = session.post(f"{user_url}/servers/{server_name}")
 r.raise_for_status()
 if r.status_code == 201:
 log.info(f"Server {log_name} is launched and ready")
 elif r.status_code == 202:
 log.info(f"Server {log_name} is launching...")
 else:
 log.warning(f"Unexpected status: {r.status_code}")
 r = session.get(user_url)
 r.raise_for_status()
 user_model = r.json()

 # report server status
 server = user_model['servers'][server_name]
 if server['pending']:
 status = f"pending {server['pending']}"
 elif server['ready']:
 status = "ready"
 else:
 # shouldn't be possible!
 raise ValueError(f"Unexpected server state: {server}")

 log.info(f"Server {log_name} is {status}")

 # wait for server to be ready using progress API
 progress_url = user_model['servers'][server_name]['progress_url']
 for event in event_stream(session, f"{hub_url}{progress_url}"):
 log.info(f"Progress {event['progress']}%: {event['message']}")
 if event.get("ready"):
 server_url = event['url']
 break
 else:
 # server never ready
 raise ValueError(f"{log_name} never started!")

 # at this point, we know the server is ready and waiting to receive requests
 # return the full URL where the server can be accessed
 return f"{hub_url}{server_url}"

def stop_server(session, hub_url, user, server_name=""):
 """Stop a server via the JupyterHub API

 Returns when the server has finished stopping
 """
 # step 1: get user status
 user_url = f"{hub_url}/hub/api/users/{user}"
 server_url = f"{user_url}/servers/{server_name}"
 log_name = f"{user}/{server_name}".rstrip("/")

 log.info(f"Stopping server {log_name}")
 r = session.delete(server_url)
 if r.status_code == 404:
 log.info(f"Server {log_name} already stopped")

 r.raise_for_status()
 if r.status_code == 204:
 log.info(f"Server {log_name} stopped")
 return

 # else: 202, stop requested, but not complete
 # wait for stop to finish
 log.info(f"Server {log_name} stopping...")

 # wait for server to be done stopping
 while True:
 r = session.get(user_url)
 r.raise_for_status()
 user_model = r.json()
 if server_name not in user_model.get("servers", {}):
 log.info(f"Server {log_name} stopped")
 return
 server = user_model["servers"][server_name]
 if not server['pending']:
 raise ValueError(f"Waiting for {log_name}, but no longer pending.")
 log.info(f"Server {log_name} pending: {server['pending']}")
 # wait to poll again
 time.sleep(1)

 Monitoring

Monitoring

This section covers details on monitoring the state of your JupyterHub installation.

JupyterHub expose the /metrics endpoint that returns text describing its current
operational state formatted in a way Prometheus [https://prometheus.io/docs/introduction/overview/] understands.

Prometheus is a separate open source tool that can be configured to repeatedly poll
JupyterHub’s /metrics endpoint to parse and save its current state.

By doing so, Prometheus can describe JupyterHub’s evolving state over time.
This evolving state can then be accessed through Prometheus that expose its underlying
storage to those allowed to access it, and be presented with dashboards by a
tool like Grafana [https://grafana.com/docs/grafana/latest/getting-started/what-is-grafana/].

	List of Prometheus Metrics

 List of Prometheus Metrics

List of Prometheus Metrics

	Type

	Name

	Description

	histogram

	jupyterhub_check_routes_duration_seconds

	Time taken to validate all routes in proxy

	histogram

	jupyterhub_hub_startup_duration_seconds

	Time taken for Hub to start

	histogram

	jupyterhub_init_spawners_duration_seconds

	Time taken for spawners to initialize

	histogram

	jupyterhub_proxy_add_duration_seconds

	duration for adding user routes to proxy

	histogram

	jupyterhub_proxy_delete_duration_seconds

	duration for deleting user routes from proxy

	histogram

	jupyterhub_proxy_poll_duration_seconds

	duration for polling all routes from proxy

	histogram

	jupyterhub_request_duration_seconds

	request duration for all HTTP requests

	gauge

	jupyterhub_running_servers

	the number of user servers currently running

	histogram

	jupyterhub_server_poll_duration_seconds

	time taken to poll if server is running

	histogram

	jupyterhub_server_spawn_duration_seconds

	time taken for server spawning operation

	histogram

	jupyterhub_server_stop_seconds

	time taken for server stopping operation

	gauge

	jupyterhub_total_users

	total number of users

 The Hub’s Database

The Hub’s Database

JupyterHub uses a database to store information about users, services, and other
data needed for operating the Hub.

Default SQLite database

The default database for JupyterHub is a SQLite [https://sqlite.org] database.
We have chosen SQLite as JupyterHub’s default for its lightweight simplicity
in certain uses such as testing, small deployments and workshops.

For production systems, SQLite has some disadvantages when used with JupyterHub:

	upgrade-db may not work, and you may need to start with a fresh database

	downgrade-db will not work if you want to rollback to an earlier
version, so backup the jupyterhub.sqlite file before upgrading

The sqlite documentation provides a helpful page about when to use SQLite and
where traditional RDBMS may be a better choice [https://sqlite.org/whentouse.html].

Using an RDBMS (PostgreSQL, MySQL)

When running a long term deployment or a production system, we recommend using
a traditional RDBMS database, such as PostgreSQL [https://www.postgresql.org]
or MySQL [https://www.mysql.com], that supports the SQL ALTER TABLE
statement.

Notes and Tips

SQLite

The SQLite database should not be used on NFS. SQLite uses reader/writer locks
to control access to the database. This locking mechanism might not work
correctly if the database file is kept on an NFS filesystem. This is because
fcntl() file locking is broken on many NFS implementations. Therefore, you
should avoid putting SQLite database files on NFS since it will not handle well
multiple processes which might try to access the file at the same time.

PostgreSQL

We recommend using PostgreSQL for production if you are unsure whether to use
MySQL or PostgreSQL or if you do not have a strong preference. There is
additional configuration required for MySQL that is not needed for PostgreSQL.

MySQL / MariaDB

	You should use the pymysql sqlalchemy provider (the other one, MySQLdb,
isn’t available for py3).

	You also need to set pool_recycle to some value (typically 60 - 300)
which depends on your MySQL setup. This is necessary since MySQL kills
connections serverside if they’ve been idle for a while, and the connection
from the hub will be idle for longer than most connections. This behavior
will lead to frustrating ‘the connection has gone away’ errors from
sqlalchemy if pool_recycle is not set.

	If you use utf8mb4 collation with MySQL earlier than 5.7.7 or MariaDB
earlier than 10.2.1 you may get an 1709, Index column size too large error.
To fix this you need to set innodb_large_prefix to enabled and
innodb_file_format to Barracuda to allow for the index sizes jupyterhub
uses. row_format will be set to DYNAMIC as long as those options are set
correctly. Later versions of MariaDB and MySQL should set these values by
default, as well as have a default DYNAMIC row_format and pose no trouble
to users.

 Working with templates and UI

Working with templates and UI

The pages of the JupyterHub application are generated from
Jinja [http://jinja.pocoo.org/] templates. These allow the header, for
example, to be defined once and incorporated into all pages. By providing
your own templates, you can have complete control over JupyterHub’s
appearance.

Custom Templates

JupyterHub will look for custom templates in all of the paths in the
JupyterHub.template_paths configuration option, falling back on the
default templates [https://github.com/jupyterhub/jupyterhub/tree/HEAD/share/jupyterhub/templates]
if no custom template with that name is found. This fallback
behavior is new in version 0.9; previous versions searched only those paths
explicitly included in template_paths. You may override as many
or as few templates as you desire.

Extending Templates

Jinja provides a mechanism to extend templates [http://jinja.pocoo.org/docs/2.10/templates/#template-inheritance].
A base template can define a block, and child templates can replace or
supplement the material in the block. The
JupyterHub templates [https://github.com/jupyterhub/jupyterhub/tree/HEAD/share/jupyterhub/templates]
make extensive use of blocks, which allows you to customize parts of the
interface easily.

In general, a child template can extend a base template, page.html, by beginning with:

{% extends "page.html" %}

This works, unless you are trying to extend the default template for the same
file name. Starting in version 0.9, you may refer to the base file with a
templates/ prefix. Thus, if you are writing a custom page.html, start the
file with this block:

{% extends "templates/page.html" %}

By defining blocks with same name as in the base template, child templates
can replace those sections with custom content. The content from the base
template can be included with the {{ super() }} directive.

Example

To add an additional message to the spawn-pending page, below the existing
text about the server starting up, place this content in a file named
spawn_pending.html in a directory included in the
JupyterHub.template_paths configuration option.

{% extends "templates/spawn_pending.html" %} {% block message %} {{ super() }}
<p>Patience is a virtue.</p>
{% endblock %}

Page Announcements

To add announcements to be displayed on a page, you have two options:

	Extend the page templates as described above

	Use configuration variables

Announcement Configuration Variables

If you set the configuration variable JupyterHub.template_vars = {'announcement': 'some_text'}, the given some_text will be placed on
the top of all pages. The more specific variables
announcement_login, announcement_spawn, announcement_home, and
announcement_logout are more specific and only show on their
respective pages (overriding the global announcement variable).
Note that changing these variables require a restart, unlike direct
template extension.

You can get the same effect by extending templates, which allows you
to update the messages without restarting. Set
c.JupyterHub.template_paths as mentioned above, and then create a
template (for example, login.html) with:

{% extends "templates/login.html" %} {% set announcement = 'some message' %}

Extending page.html puts the message on all pages, but note that
extending page.html take precedence over an extension of a specific
page (unlike the variable-based approach above).

 Deploying JupyterHub in “API only mode”

Deploying JupyterHub in “API only mode”

As a service for deploying and managing Jupyter servers for users, JupyterHub
exposes this functionality primarily via a REST API.
For convenience, JupyterHub also ships with a basic web UI built using that REST API.
The basic web UI enables users to click a button to quickly start and stop their servers,
and it lets admins perform some basic user and server management tasks.

The REST API has always provided additional functionality beyond what is available in the basic web UI.
Similarly, we avoid implementing UI functionality that is also not available via the API.
With JupyterHub 2.0, the basic web UI will always be composed using the REST API.
In other words, no UI pages should rely on information not available via the REST API.
Previously, some admin UI functionality could only be achieved via admin pages,
such as paginated requests.

Limited UI customization via templates

The JupyterHub UI is customizable via extensible HTML templates,
but this has some limited scope to what can be customized.
Adding some content and messages to existing pages is well supported,
but changing the page flow and what pages are available are beyond the scope of what is customizable.

Rich UI customization with REST API based apps

Increasingly, JupyterHub is used purely as an API for managing Jupyter servers
for other Jupyter-based applications that might want to present a different user experience.
If you want a fully customized user experience,
you can now disable the Hub UI and use your own pages together with the JupyterHub REST API
to build your own web application to serve your users,
relying on the Hub only as an API for managing users and servers.

One example of such an application is BinderHub [https://binderhub.readthedocs.io], which powers https://mybinder.org,
and motivates many of these changes.

BinderHub is distinct from a traditional JupyterHub deployment
because it uses temporary users created for each launch.
Instead of presenting a login page,
users are presented with a form to specify what environment they would like to launch:

[image: Binder launch form]

When a launch is requested:

	an image is built, if necessary

	a temporary user is created,

	a server is launched for that user, and

	when running, users are redirected to an already running server with an auth token in the URL

	after the session is over, the user is deleted

This means that a lot of JupyterHub’s UI flow doesn’t make sense:

	there is no way for users to login

	the human user doesn’t map onto a JupyterHub User in a meaningful way

	when a server isn’t running, there isn’t a ‘restart your server’ action available because the user has been deleted

	users do not have any access to any Hub functionality, so presenting pages for those features would be confusing

BinderHub is one of the motivating use cases for JupyterHub supporting being used only via its API.
We’ll use BinderHub here as an example of various configuration options.

Disabling Hub UI

c.JupyterHub.hub_routespec is a configuration option to specify which URL prefix should be routed to the Hub.
The default is / which means that the Hub will receive all requests not already specified to be routed somewhere else.

There are three values that are most logical for hub_routespec:

	/ - this is the default, and used in most deployments.
It is also the only option prior to JupyterHub 1.4.

	/hub/ - this serves only Hub pages, both UI and API

	/hub/api - this serves only the Hub API, so all Hub UI is disabled,
aside from the OAuth confirmation page, if used.

If you choose a hub routespec other than /,
the main JupyterHub feature you will lose is the automatic handling of requests for /user/:username
when the requested server is not running.

JupyterHub’s handling of this request shows this page,
telling you that the server is not running,
with a button to launch it again:

[image: screenshot of hub page for server not running]

If you set hub_routespec to something other than /,
it is likely that you also want to register another destination for / to handle requests to not-running servers.
If you don’t, you will see a default 404 page from the proxy:

[image: screenshot of CHP default 404]

For mybinder.org, the default “start my server” page doesn’t make sense,
because when a server is gone, there is no restart action.
Instead, we provide hints about how to get back to a link to start a new server:

[image: screenshot of mybinder.org 404]

To achieve this, mybinder.org registers a route for / that goes to a custom endpoint
that runs nginx and only serves this static HTML error page.
This is set with

c.Proxy.extra_routes = {
 "/": "http://custom-404-entpoint/",
}

You may want to use an alternate behavior, such as redirecting to a landing page,
or taking some other action based on the requested page.

If you use c.JupyterHub.hub_routespec = "/hub/",
then all the Hub pages will be available,
and only this default-page-404 issue will come up.

If you use c.JupyterHub.hub_routespec = "/hub/api/",
then only the Hub API will be available,
and all UI will be up to you.
mybinder.org takes this last option,
because none of the Hub UI pages really make sense.
Binder users don’t have any reason to know or care that JupyterHub happens
to be an implementation detail of how their environment is managed.
Seeing Hub error pages and messages in that situation is more likely to be confusing than helpful.

New in version 1.4: c.JupyterHub.hub_routespec and c.Proxy.extra_routes are new in JupyterHub 1.4.

 Eventlogging and Telemetry

Eventlogging and Telemetry

JupyterHub can be configured to record structured events from a running server using Jupyter’s Telemetry System [https://github.com/jupyter/telemetry]. The types of events that JupyterHub emits are defined by JSON schemas [https://json-schema.org/] listed at the bottom of this page.

How to emit events

Event logging is handled by its Eventlog object. This leverages Python’s standing logging [https://docs.python.org/3/library/logging.html] library to emit, filter, and collect event data.

To begin recording events, you’ll need to set two configurations:

	handlers: tells the EventLog where to route your events. This trait is a list of Python logging handlers that route events to

	allows_schemas: tells the EventLog which events should be recorded. No events are emitted by default; all recorded events must be listed here.

Here’s a basic example:

import logging

c.EventLog.handlers = [
 logging.FileHandler('event.log'),
]

c.EventLog.allowed_schemas = [
 'hub.jupyter.org/server-action'
]

The output is a file, "event.log", with events recorded as JSON data.

Event schemas

	JupyterHub server events

 JupyterHub server events

JupyterHub server events

	hub.jupyter.org/server-action

	Record actions on user servers made via JupyterHub.

JupyterHub can perform various actions on user servers via
direct interaction from users, or via the API. This event is
recorded whenever either of those happen.

Limitations:

	This does not record all server starts / stops, only those
explicitly performed by JupyterHub. For example, a user’s server
can go down because the node it was running on dies. That will
not cause an event to be recorded, since it was not initiated
by JupyterHub. In practice this happens often, so this is not
a complete record.

	Events are only recorded when an action succeeds.

	type

	object

	properties

	
	action

	Action performed by JupyterHub.

This is a required field.

Possibl Values:

	start
A user’s server was successfully started

	stop
A user’s server was successfully stopped

	enum

	start, stop

	
	username

	Name of the user whose server this action was performed on.

This is the normalized name used by JupyterHub itself,
which is derived from the authentication provider used but
might not be the same as used in the authentication provider.

	type

	string

	
	servername

	Name of the server this action was performed on.

JupyterHub supports each user having multiple servers with
arbitrary names, and this field specifies the name of the
server.

The ‘default’ server is denoted by the empty string

	type

	string

 Configuring user environments

Configuring user environments

Deploying JupyterHub means you are providing Jupyter notebook environments for
multiple users. Often, this includes a desire to configure the user
environment in some way.

Since the jupyterhub-singleuser server extends the standard Jupyter notebook
server, most configuration and documentation that applies to Jupyter Notebook
applies to the single-user environments. Configuration of user environments
typically does not occur through JupyterHub itself, but rather through system-
wide configuration of Jupyter, which is inherited by jupyterhub-singleuser.

Tip: When searching for configuration tips for JupyterHub user
environments, try removing JupyterHub from your search because there are a lot
more people out there configuring Jupyter than JupyterHub and the
configuration is the same.

This section will focus on user environments, including:

	Installing packages

	Configuring Jupyter and IPython

	Installing kernelspecs

	Using containers vs. multi-user hosts

Installing packages

To make packages available to users, you generally will install packages
system-wide or in a shared environment.

This installation location should always be in the same environment that
jupyterhub-singleuser itself is installed in, and must be readable and
executable by your users. If you want users to be able to install additional
packages, it must also be writable by your users.

If you are using a standard system Python install, you would use:

sudo python3 -m pip install numpy

to install the numpy package in the default system Python 3 environment
(typically /usr/local).

You may also use conda to install packages. If you do, you should make sure
that the conda environment has appropriate permissions for users to be able to
run Python code in the env.

Configuring Jupyter and IPython

Jupyter [https://jupyter-notebook.readthedocs.io/en/stable/config_overview.html]
and IPython [https://ipython.readthedocs.io/en/stable/development/config.html]
have their own configuration systems.

As a JupyterHub administrator, you will typically want to install and configure
environments for all JupyterHub users. For example, you wish for each student in
a class to have the same user environment configuration.

Jupyter and IPython support “system-wide” locations for configuration, which
is the logical place to put global configuration that you want to affect all
users. It’s generally more efficient to configure user environments “system-wide”,
and it’s a good idea to avoid creating files in users’ home directories.

The typical locations for these config files are:

	system-wide in /etc/{jupyter|ipython}

	env-wide (environment wide) in {sys.prefix}/etc/{jupyter|ipython}.

Example: Enable an extension system-wide

For example, to enable the cython IPython extension for all of your users,
create the file /etc/ipython/ipython_config.py:

c.InteractiveShellApp.extensions.append("cython")

Example: Enable a Jupyter notebook configuration setting for all users

Note

These examples configure the Jupyter ServerApp,
which is used by JupyterLab, the default in JupyterHub 2.0.

If you are using the classing Jupyter Notebook server,
the same things should work,
with the following substitutions:

	Where you see jupyter_server_config, use jupyter_notebook_config

	Where you see NotebookApp, use ServerApp

To enable Jupyter notebook’s internal idle-shutdown behavior (requires
notebook ≥ 5.4), set the following in the /etc/jupyter/jupyter_server_config.py
file:

shutdown the server after no activity for an hour
c.ServerApp.shutdown_no_activity_timeout = 60 * 60
shutdown kernels after no activity for 20 minutes
c.MappingKernelManager.cull_idle_timeout = 20 * 60
check for idle kernels every two minutes
c.MappingKernelManager.cull_interval = 2 * 60

Installing kernelspecs

You may have multiple Jupyter kernels installed and want to make sure that
they are available to all of your users. This means installing kernelspecs
either system-wide (e.g. in /usr/local/) or in the sys.prefix of JupyterHub
itself.

Jupyter kernelspec installation is system wide by default, but some kernels
may default to installing kernelspecs in your home directory. These will need
to be moved system-wide to ensure that they are accessible.

You can see where your kernelspecs are with:

jupyter kernelspec list

Example: Installing kernels system-wide

Assuming I have a Python 2 and Python 3 environment that I want to make
sure are available, I can install their specs system-wide (in /usr/local) with:

/path/to/python3 -m ipykernel install --prefix=/usr/local
/path/to/python2 -m ipykernel install --prefix=/usr/local

Multi-user hosts vs. Containers

There are two broad categories of user environments that depend on what
Spawner you choose:

	Multi-user hosts (shared system)

	Container-based

How you configure user environments for each category can differ a bit
depending on what Spawner you are using.

The first category is a shared system (multi-user host) where
each user has a JupyterHub account and a home directory as well as being
a real system user. In this example, shared configuration and installation
must be in a ‘system-wide’ location, such as /etc/ or /usr/local
or a custom prefix such as /opt/conda.

When JupyterHub uses container-based Spawners (e.g. KubeSpawner or
DockerSpawner), the ‘system-wide’ environment is really the container image
which you are using for users.

In both cases, you want to avoid putting configuration in user home
directories because users can change those configuration settings. Also,
home directories typically persist once they are created, so they are
difficult for admins to update later.

Named servers

By default, in a JupyterHub deployment each user has exactly one server.

JupyterHub can, however, have multiple servers per user.
This is most useful in deployments where users can configure the environment
in which their server will start (e.g. resource requests on an HPC cluster),
so that a given user can have multiple configurations running at the same time,
without having to stop and restart their one server.

To allow named servers:

c.JupyterHub.allow_named_servers = True

Named servers were implemented in the REST API in JupyterHub 0.8,
and JupyterHub 1.0 introduces UI for managing named servers via the user home page:

[image: named servers on the home page]

as well as the admin page:

[image: named servers on the admin page]

Named servers can be accessed, created, started, stopped, and deleted
from these pages. Activity tracking is now per-server as well.

The number of named servers per user can be limited by setting

c.JupyterHub.named_server_limit_per_user = 5

Switching back to classic notebook

By default the single-user server launches JupyterLab,
which is based on Jupyter Server [https://jupyter-server.readthedocs.io].
This is the default server when running JupyterHub ≥ 2.0.
You can switch to using the legacy Jupyter Notebook server by setting the JUPYTERHUB_SINGLEUSER_APP environment variable
(in the single-user environment) to:

export JUPYTERHUB_SINGLEUSER_APP='notebook.notebookapp.NotebookApp'

Changed in version 2.0: JupyterLab is now the default singleuser UI, if available,
which is based on the Jupyter Server [https://jupyter-server.readthedocs.io],
no longer the legacy Jupyter Notebook [https://jupyter-notebook.readthedocs.io] server.
JupyterHub prior to 2.0 launched the legacy notebook server (jupyter notebook),
and Jupyter server could be selected by specifying

jupyterhub_config.py
c.Spawner.cmd = ["jupyter-labhub"]

or for an otherwise customized Jupyter Server app,
set the environment variable:

export JUPYTERHUB_SINGLEUSER_APP='jupyter_server.serverapp.ServerApp'

 Configuration examples

Configuration examples

The following sections provide examples, including configuration files and tips, for the
following:

	Configuring GitHub OAuth

	Using reverse proxy (nginx and Apache)

	Run JupyterHub without root privileges using sudo

 Configure GitHub OAuth

Configure GitHub OAuth

In this example, we show a configuration file for a fairly standard JupyterHub
deployment with the following assumptions:

	Running JupyterHub on a single cloud server

	Using SSL on the standard HTTPS port 443

	Using GitHub OAuth (using oauthenticator) for login

	Using the default spawner (to configure other spawners, uncomment and edit
spawner_class as well as follow the instructions for your desired spawner)

	Users exist locally on the server

	Users’ notebooks to be served from ~/assignments to allow users to browse
for notebooks within other users’ home directories

	You want the landing page for each user to be a Welcome.ipynb notebook in
their assignments directory.

	All runtime files are put into /srv/jupyterhub and log files in /var/log.

The jupyterhub_config.py file would have these settings:

jupyterhub_config.py file
c = get_config()

import os
pjoin = os.path.join

runtime_dir = os.path.join('/srv/jupyterhub')
ssl_dir = pjoin(runtime_dir, 'ssl')
if not os.path.exists(ssl_dir):
 os.makedirs(ssl_dir)

Allows multiple single-server per user
c.JupyterHub.allow_named_servers = True

https on :443
c.JupyterHub.port = 443
c.JupyterHub.ssl_key = pjoin(ssl_dir, 'ssl.key')
c.JupyterHub.ssl_cert = pjoin(ssl_dir, 'ssl.cert')

put the JupyterHub cookie secret and state db
in /var/run/jupyterhub
c.JupyterHub.cookie_secret_file = pjoin(runtime_dir, 'cookie_secret')
c.JupyterHub.db_url = pjoin(runtime_dir, 'jupyterhub.sqlite')
or `--db=/path/to/jupyterhub.sqlite` on the command-line

use GitHub OAuthenticator for local users
c.JupyterHub.authenticator_class = 'oauthenticator.LocalGitHubOAuthenticator'
c.GitHubOAuthenticator.oauth_callback_url = os.environ['OAUTH_CALLBACK_URL']

create system users that don't exist yet
c.LocalAuthenticator.create_system_users = True

specify users and admin
c.Authenticator.allowed_users = {'rgbkrk', 'minrk', 'jhamrick'}
c.Authenticator.admin_users = {'jhamrick', 'rgbkrk'}

uses the default spawner
To use a different spawner, uncomment `spawner_class` and set to desired
spawner (e.g. SudoSpawner). Follow instructions for desired spawner
configuration.
c.JupyterHub.spawner_class = 'sudospawner.SudoSpawner'

start single-user notebook servers in ~/assignments,
with ~/assignments/Welcome.ipynb as the default landing page
this config could also be put in
/etc/jupyter/jupyter_notebook_config.py
c.Spawner.notebook_dir = '~/assignments'
c.Spawner.args = ['--NotebookApp.default_url=/notebooks/Welcome.ipynb']

Using the GitHub Authenticator requires a few additional
environment variable to be set prior to launching JupyterHub:

export GITHUB_CLIENT_ID=github_id
export GITHUB_CLIENT_SECRET=github_secret
export OAUTH_CALLBACK_URL=https://example.com/hub/oauth_callback
export CONFIGPROXY_AUTH_TOKEN=super-secret
append log output to log file /var/log/jupyterhub.log
jupyterhub -f /etc/jupyterhub/jupyterhub_config.py &>> /var/log/jupyterhub.log

 Using a reverse proxy

Using a reverse proxy

In the following example, we show configuration files for a JupyterHub server
running locally on port 8000 but accessible from the outside on the standard
SSL port 443. This could be useful if the JupyterHub server machine is also
hosting other domains or content on 443. The goal in this example is to
satisfy the following:

	JupyterHub is running on a server, accessed only via HUB.DOMAIN.TLD:443

	On the same machine, NO_HUB.DOMAIN.TLD strictly serves different content,
also on port 443

	nginx or apache is used as the public access point (which means that
only nginx/apache will bind to 443)

	After testing, the server in question should be able to score at least an A on the
Qualys SSL Labs SSL Server Test [https://www.ssllabs.com/ssltest/]

Let’s start out with needed JupyterHub configuration in jupyterhub_config.py:

Force the proxy to only listen to connections to 127.0.0.1 (on port 8000)
c.JupyterHub.bind_url = 'http://127.0.0.1:8000'

(For Jupyterhub < 0.9 use c.JupyterHub.ip = '127.0.0.1'.)

For high-quality SSL configuration, we also generate Diffie-Helman parameters.
This can take a few minutes:

openssl dhparam -out /etc/ssl/certs/dhparam.pem 4096

nginx

This nginx config file is fairly standard fare except for the two
location blocks within the main section for HUB.DOMAIN.tld.
To create a new site for jupyterhub in your nginx config, make a new file
in sites.enabled, e.g. /etc/nginx/sites.enabled/jupyterhub.conf:

top-level http config for websocket headers
If Upgrade is defined, Connection = upgrade
If Upgrade is empty, Connection = close
map $http_upgrade $connection_upgrade {
 default upgrade;
 '' close;
}

HTTP server to redirect all 80 traffic to SSL/HTTPS
server {
 listen 80;
 server_name HUB.DOMAIN.TLD;

 # Tell all requests to port 80 to be 302 redirected to HTTPS
 return 302 https://$host$request_uri;
}

HTTPS server to handle JupyterHub
server {
 listen 443;
 ssl on;

 server_name HUB.DOMAIN.TLD;

 ssl_certificate /etc/letsencrypt/live/HUB.DOMAIN.TLD/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/HUB.DOMAIN.TLD/privkey.pem;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_dhparam /etc/ssl/certs/dhparam.pem;
 ssl_ciphers 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:AES:CAMELLIA:DES-CBC3-SHA:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK:!aECDH:!EDH-DSS-DES-CBC3-SHA:!EDH-RSA-DES-CBC3-SHA:!KRB5-DES-CBC3-SHA';
 ssl_session_timeout 1d;
 ssl_session_cache shared:SSL:50m;
 ssl_stapling on;
 ssl_stapling_verify on;
 add_header Strict-Transport-Security max-age=15768000;

 # Managing literal requests to the JupyterHub front end
 location / {
 proxy_pass http://127.0.0.1:8000;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 # websocket headers
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $connection_upgrade;
 proxy_set_header X-Scheme $scheme;

 proxy_buffering off;
 }

 # Managing requests to verify letsencrypt host
 location ~ /.well-known {
 allow all;
 }
}

If nginx is not running on port 443, substitute $http_host for $host on
the lines setting the Host header.

nginx will now be the front facing element of JupyterHub on 443 which means
it is also free to bind other servers, like NO_HUB.DOMAIN.TLD to the same port
on the same machine and network interface. In fact, one can simply use the same
server blocks as above for NO_HUB and simply add line for the root directory
of the site as well as the applicable location call:

server {
 listen 80;
 server_name NO_HUB.DOMAIN.TLD;

 # Tell all requests to port 80 to be 302 redirected to HTTPS
 return 302 https://$host$request_uri;
}

server {
 listen 443;
 ssl on;

 # INSERT OTHER SSL PARAMETERS HERE AS ABOVE
 # SSL cert may differ

 # Set the appropriate root directory
 root /var/www/html

 # Set URI handling
 location / {
 try_files $uri $uri/ =404;
 }

 # Managing requests to verify letsencrypt host
 location ~ /.well-known {
 allow all;
 }

}

Now restart nginx, restart the JupyterHub, and enjoy accessing
https://HUB.DOMAIN.TLD while serving other content securely on
https://NO_HUB.DOMAIN.TLD.

SELinux permissions for nginx

On distributions with SELinux enabled (e.g. Fedora), one may encounter permission errors
when the nginx service is started.

We need to allow nginx to perform network relay and connect to the jupyterhub port. The
following commands do that:

semanage port -a -t http_port_t -p tcp 8000
setsebool -P httpd_can_network_relay 1
setsebool -P httpd_can_network_connect 1

Replace 8000 with the port the jupyterhub server is running from.

Apache

As with nginx above, you can use Apache [https://httpd.apache.org] as the reverse proxy.
First, we will need to enable the apache modules that we are going to need:

a2enmod ssl rewrite proxy proxy_http proxy_wstunnel

Our Apache configuration is equivalent to the nginx configuration above:

	Redirect HTTP to HTTPS

	Good SSL Configuration

	Support for websockets on any proxied URL

	JupyterHub is running locally at http://127.0.0.1:8000

redirect HTTP to HTTPS
Listen 80
<VirtualHost HUB.DOMAIN.TLD:80>
 ServerName HUB.DOMAIN.TLD
 Redirect / https://HUB.DOMAIN.TLD/
</VirtualHost>

Listen 443
<VirtualHost HUB.DOMAIN.TLD:443>

 ServerName HUB.DOMAIN.TLD

 # configure SSL
 SSLEngine on
 SSLCertificateFile /etc/letsencrypt/live/HUB.DOMAIN.TLD/fullchain.pem
 SSLCertificateKeyFile /etc/letsencrypt/live/HUB.DOMAIN.TLD/privkey.pem
 SSLProtocol All -SSLv2 -SSLv3
 SSLOpenSSLConfCmd DHParameters /etc/ssl/certs/dhparam.pem
 SSLCipherSuite EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH

 # Use RewriteEngine to handle websocket connection upgrades
 RewriteEngine On
 RewriteCond %{HTTP:Connection} Upgrade [NC]
 RewriteCond %{HTTP:Upgrade} websocket [NC]
 RewriteRule /(.*) ws://127.0.0.1:8000/$1 [P,L]

 <Location "/">
 # preserve Host header to avoid cross-origin problems
 ProxyPreserveHost on
 # proxy to JupyterHub
 ProxyPass http://127.0.0.1:8000/
 ProxyPassReverse http://127.0.0.1:8000/
 </Location>
</VirtualHost>

In case of the need to run the jupyterhub under /jhub/ or other location please use the below configurations:

	JupyterHub running locally at http://127.0.0.1:8000/jhub/ or other location

httpd.conf amendments:

 RewriteRule /jhub/(.*) ws://127.0.0.1:8000/jhub/$1 [NE,P,L]
 RewriteRule /jhub/(.*) http://127.0.0.1:8000/jhub/$1 [NE,P,L]

 ProxyPass /jhub/ http://127.0.0.1:8000/jhub/
 ProxyPassReverse /jhub/ http://127.0.0.1:8000/jhub/

jupyterhub_config.py amendments:

 --The public facing URL of the whole JupyterHub application.
 --This is the address on which the proxy will bind. Sets protocol, ip, base_url
 c.JupyterHub.bind_url = 'http://127.0.0.1:8000/jhub/'

 Run JupyterHub without root privileges using sudo

Run JupyterHub without root privileges using sudo

Note: Setting up sudo permissions involves many pieces of system
configuration. It is quite easy to get wrong and very difficult to debug.
Only do this if you are very sure you must.

Overview

There are many Authenticators and Spawners available for JupyterHub. Some, such
as DockerSpawner or OAuthenticator, do not need any elevated permissions. This
document describes how to get the full default behavior of JupyterHub while
running notebook servers as real system users on a shared system without
running the Hub itself as root.

Since JupyterHub needs to spawn processes as other users, the simplest way
is to run it as root, spawning user servers with setuid [http://linux.die.net/man/2/setuid].
But this isn’t especially safe, because you have a process running on the
public web as root.

A more prudent way to run the server while preserving functionality is to
create a dedicated user with sudo access restricted to launching and
monitoring single-user servers.

Create a user

To do this, first create a user that will run the Hub:

sudo useradd rhea

This user shouldn’t have a login shell or password (possible with -r).

Set up sudospawner

Next, you will need sudospawner [https://github.com/jupyter/sudospawner]
to enable monitoring the single-user servers with sudo:

sudo python3 -m pip install sudospawner

Now we have to configure sudo to allow the Hub user (rhea) to launch
the sudospawner script on behalf of our hub users (here zoe and wash).
We want to confine these permissions to only what we really need.

Edit /etc/sudoers

To do this we add to /etc/sudoers (use visudo for safe editing of sudoers):

	specify the list of users JUPYTER_USERS for whom rhea can spawn servers

	set the command JUPYTER_CMD that rhea can execute on behalf of users

	give rhea permission to run JUPYTER_CMD on behalf of JUPYTER_USERS
without entering a password

For example:

comma-separated list of users that can spawn single-user servers
this should include all of your Hub users
Runas_Alias JUPYTER_USERS = rhea, zoe, wash

the command(s) the Hub can run on behalf of the above users without needing a password
the exact path may differ, depending on how sudospawner was installed
Cmnd_Alias JUPYTER_CMD = /usr/local/bin/sudospawner

actually give the Hub user permission to run the above command on behalf
of the above users without prompting for a password
rhea ALL=(JUPYTER_USERS) NOPASSWD:JUPYTER_CMD

It might be useful to modify secure_path to add commands in path.

As an alternative to adding every user to the /etc/sudoers file, you can
use a group in the last line above, instead of JUPYTER_USERS:

rhea ALL=(%jupyterhub) NOPASSWD:JUPYTER_CMD

If the jupyterhub group exists, there will be no need to edit /etc/sudoers
again. A new user will gain access to the application when added to the group:

$ adduser -G jupyterhub newuser

Test sudo setup

Test that the new user doesn’t need to enter a password to run the sudospawner
command.

This should prompt for your password to switch to rhea, but not prompt for
any password for the second switch. It should show some help output about
logging options:

$ sudo -u rhea sudo -n -u $USER /usr/local/bin/sudospawner --help
Usage: /usr/local/bin/sudospawner [OPTIONS]

Options:

--help show this help information
...

And this should fail:

$ sudo -u rhea sudo -n -u $USER echo 'fail'
sudo: a password is required

Enable PAM for non-root

By default, PAM authentication [http://en.wikipedia.org/wiki/Pluggable_authentication_module]
is used by JupyterHub. To use PAM, the process may need to be able to read
the shadow password database.

Shadow group (Linux)

Note: On Fedora based distributions there is no clear way to configure
the PAM database to allow sufficient access for authenticating with the target user’s password
from JupyterHub. As a workaround we recommend use an
alternative authentication method [https://github.com/jupyterhub/jupyterhub/wiki/Authenticators].

$ ls -l /etc/shadow
-rw-r----- 1 root shadow 2197 Jul 21 13:41 shadow

If there’s already a shadow group, you are set. If its permissions are more like:

 $ ls -l /etc/shadow
 -rw------- 1 root wheel 2197 Jul 21 13:41 shadow

Then you may want to add a shadow group, and make the shadow file group-readable:

$ sudo groupadd shadow
$ sudo chgrp shadow /etc/shadow
$ sudo chmod g+r /etc/shadow

We want our new user to be able to read the shadow passwords, so add it to the shadow group:

 $ sudo usermod -a -G shadow rhea

If you want jupyterhub to serve pages on a restricted port (such as port 80 for http),
then you will need to give node permission to do so:

sudo setcap 'cap_net_bind_service=+ep' /usr/bin/node

However, you may want to further understand the consequences of this.

You may also be interested in limiting the amount of CPU any process can use
on your server. cpulimit is a useful tool that is available for many Linux
distributions’ packaging system. This can be used to keep any user’s process
from using too much CPU cycles. You can configure it accoring to these
instructions [http://ubuntuforums.org/showthread.php?t=992706].

Shadow group (FreeBSD)

NOTE: This has not been tested and may not work as expected.

$ ls -l /etc/spwd.db /etc/master.passwd
-rw------- 1 root wheel 2516 Aug 22 13:35 /etc/master.passwd
-rw------- 1 root wheel 40960 Aug 22 13:35 /etc/spwd.db

Add a shadow group if there isn’t one, and make the shadow file group-readable:

$ sudo pw group add shadow
$ sudo chgrp shadow /etc/spwd.db
$ sudo chmod g+r /etc/spwd.db
$ sudo chgrp shadow /etc/master.passwd
$ sudo chmod g+r /etc/master.passwd

We want our new user to be able to read the shadow passwords, so add it to the
shadow group:

$ sudo pw user mod rhea -G shadow

Test that PAM works

We can verify that PAM is working, with:

$ sudo -u rhea python3 -c "import pamela, getpass; print(pamela.authenticate('$USER', getpass.getpass()))"
Password: [enter your unix password]

Make a directory for JupyterHub

JupyterHub stores its state in a database, so it needs write access to a directory.
The simplest way to deal with this is to make a directory owned by your Hub user,
and use that as the CWD when launching the server.

$ sudo mkdir /etc/jupyterhub
$ sudo chown rhea /etc/jupyterhub

Start jupyterhub

Finally, start the server as our newly configured user, rhea:

$ cd /etc/jupyterhub
$ sudo -u rhea jupyterhub --JupyterHub.spawner_class=sudospawner.SudoSpawner

And try logging in.

Troubleshooting: SELinux

If you still get a generic Permission denied PermissionError, it’s possible SELinux is blocking you.

Here’s how you can make a module to allow this.
First, put this in a file named sudo_exec_selinux.te:

module sudo_exec_selinux 1.1;

require {
 type unconfined_t;
 type sudo_exec_t;
 class file { read entrypoint };
}

#============= unconfined_t ==============
allow unconfined_t sudo_exec_t:file entrypoint;

Then run all of these commands as root:

$ checkmodule -M -m -o sudo_exec_selinux.mod sudo_exec_selinux.te
$ semodule_package -o sudo_exec_selinux.pp -m sudo_exec_selinux.mod
$ semodule -i sudo_exec_selinux.pp

Troubleshooting: PAM session errors

If the PAM authentication doesn’t work and you see errors for
login:session-auth, or similar, considering updating to a more recent version
of jupyterhub and disabling the opening of PAM sessions with
c.PAMAuthenticator.open_sessions=False.

 Configuration Reference

Configuration Reference

Important

Make sure the version of JupyterHub for this documentation matches your
installation version, as the output of this command may change between versions.

JupyterHub configuration

As explained in the Configuration Basics
section, the jupyterhub_config.py can be automatically generated via

jupyterhub --generate-config

The following contains the output of that command for reference.

Configuration file for jupyterhub.

#--
Application(SingletonConfigurable) configuration
#--
This is an application.

The date format used by logging formatters for %(asctime)s
Default: '%Y-%m-%d %H:%M:%S'
c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S'

The Logging format template
Default: '[%(name)s]%(highlevel)s %(message)s'
c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s'

Set the log level by value or name.
Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL']
Default: 30
c.Application.log_level = 30

Instead of starting the Application, dump configuration to stdout
Default: False
c.Application.show_config = False

Instead of starting the Application, dump configuration to stdout (as JSON)
Default: False
c.Application.show_config_json = False

#--
JupyterHub(Application) configuration
#--
An Application for starting a Multi-User Jupyter Notebook server.

Maximum number of concurrent servers that can be active at a time.

Setting this can limit the total resources your users can consume.

An active server is any server that's not fully stopped. It is considered
active from the time it has been requested until the time that it has
completely stopped.

If this many user servers are active, users will not be able to launch new
servers until a server is shutdown. Spawn requests will be rejected with a 429
error asking them to try again.

If set to 0, no limit is enforced.
Default: 0
c.JupyterHub.active_server_limit = 0

Duration (in seconds) to determine the number of active users.
Default: 1800
c.JupyterHub.active_user_window = 1800

Resolution (in seconds) for updating activity

If activity is registered that is less than activity_resolution seconds more
recent than the current value, the new value will be ignored.

This avoids too many writes to the Hub database.
Default: 30
c.JupyterHub.activity_resolution = 30

Grant admin users permission to access single-user servers.

Users should be properly informed if this is enabled.
Default: False
c.JupyterHub.admin_access = False

DEPRECATED since version 0.7.2, use Authenticator.admin_users instead.
Default: set()
c.JupyterHub.admin_users = set()

Allow named single-user servers per user
Default: False
c.JupyterHub.allow_named_servers = False

Answer yes to any questions (e.g. confirm overwrite)
Default: False
c.JupyterHub.answer_yes = False

The default amount of records returned by a paginated endpoint
Default: 50
c.JupyterHub.api_page_default_limit = 50

The maximum amount of records that can be returned at once
Default: 200
c.JupyterHub.api_page_max_limit = 200

PENDING DEPRECATION: consider using services

Dict of token:username to be loaded into the database.

Allows ahead-of-time generation of API tokens for use by externally managed services,
which authenticate as JupyterHub users.

Consider using services for general services that talk to the
JupyterHub API.
Default: {}
c.JupyterHub.api_tokens = {}

Authentication for prometheus metrics
Default: True
c.JupyterHub.authenticate_prometheus = True

Class for authenticating users.

This should be a subclass of :class:`jupyterhub.auth.Authenticator`

with an :meth:`authenticate` method that:

- is a coroutine (asyncio or tornado)
- returns username on success, None on failure
- takes two arguments: (handler, data),
where `handler` is the calling web.RequestHandler,
and `data` is the POST form data from the login page.

.. versionchanged:: 1.0
authenticators may be registered via entry points,
e.g. `c.JupyterHub.authenticator_class = 'pam'`

Currently installed:
- default: jupyterhub.auth.PAMAuthenticator
- dummy: jupyterhub.auth.DummyAuthenticator
- null: jupyterhub.auth.NullAuthenticator
- pam: jupyterhub.auth.PAMAuthenticator
Default: 'jupyterhub.auth.PAMAuthenticator'
c.JupyterHub.authenticator_class = 'jupyterhub.auth.PAMAuthenticator'

The base URL of the entire application.

Add this to the beginning of all JupyterHub URLs.
Use base_url to run JupyterHub within an existing website.

.. deprecated: 0.9
Use JupyterHub.bind_url
Default: '/'
c.JupyterHub.base_url = '/'

The public facing URL of the whole JupyterHub application.

This is the address on which the proxy will bind.
Sets protocol, ip, base_url
Default: 'http://:8000'
c.JupyterHub.bind_url = 'http://:8000'

Whether to shutdown the proxy when the Hub shuts down.

Disable if you want to be able to teardown the Hub while leaving the
proxy running.

Only valid if the proxy was starting by the Hub process.

If both this and cleanup_servers are False, sending SIGINT to the Hub will
only shutdown the Hub, leaving everything else running.

The Hub should be able to resume from database state.
Default: True
c.JupyterHub.cleanup_proxy = True

Whether to shutdown single-user servers when the Hub shuts down.

Disable if you want to be able to teardown the Hub while leaving the
single-user servers running.

If both this and cleanup_proxy are False, sending SIGINT to the Hub will
only shutdown the Hub, leaving everything else running.

The Hub should be able to resume from database state.
Default: True
c.JupyterHub.cleanup_servers = True

Maximum number of concurrent users that can be spawning at a time.

Spawning lots of servers at the same time can cause performance problems for
the Hub or the underlying spawning system. Set this limit to prevent bursts of
logins from attempting to spawn too many servers at the same time.

This does not limit the number of total running servers. See
active_server_limit for that.

If more than this many users attempt to spawn at a time, their requests will
be rejected with a 429 error asking them to try again. Users will have to wait
for some of the spawning services to finish starting before they can start
their own.

If set to 0, no limit is enforced.
Default: 100
c.JupyterHub.concurrent_spawn_limit = 100

The config file to load
Default: 'jupyterhub_config.py'
c.JupyterHub.config_file = 'jupyterhub_config.py'

DEPRECATED: does nothing
Default: False
c.JupyterHub.confirm_no_ssl = False

Number of days for a login cookie to be valid.
Default is two weeks.
Default: 14
c.JupyterHub.cookie_max_age_days = 14

The cookie secret to use to encrypt cookies.

Loaded from the JPY_COOKIE_SECRET env variable by default.

Should be exactly 256 bits (32 bytes).
Default: traitlets.Undefined
c.JupyterHub.cookie_secret = traitlets.Undefined

File in which to store the cookie secret.
Default: 'jupyterhub_cookie_secret'
c.JupyterHub.cookie_secret_file = 'jupyterhub_cookie_secret'

The location of jupyterhub data files (e.g. /usr/local/share/jupyterhub)
Default: '$HOME/checkouts/readthedocs.org/user_builds/jupyterhub/checkouts/2.0.0/share/jupyterhub'
c.JupyterHub.data_files_path = '/home/docs/checkouts/readthedocs.org/user_builds/jupyterhub/checkouts/2.0.0/share/jupyterhub'

Include any kwargs to pass to the database connection.
See sqlalchemy.create_engine for details.
Default: {}
c.JupyterHub.db_kwargs = {}

url for the database. e.g. `sqlite:///jupyterhub.sqlite`
Default: 'sqlite:///jupyterhub.sqlite'
c.JupyterHub.db_url = 'sqlite:///jupyterhub.sqlite'

log all database transactions. This has A LOT of output
Default: False
c.JupyterHub.debug_db = False

DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.debug
Default: False
c.JupyterHub.debug_proxy = False

If named servers are enabled, default name of server to spawn or open, e.g. by
user-redirect.
Default: ''
c.JupyterHub.default_server_name = ''

The default URL for users when they arrive (e.g. when user directs to "/")

By default, redirects users to their own server.

Can be a Unicode string (e.g. '/hub/home') or a callable based on the handler
object:

::

def default_url_fn(handler):
user = handler.current_user
if user and user.admin:
return '/hub/admin'
return '/hub/home'

c.JupyterHub.default_url = default_url_fn
Default: traitlets.Undefined
c.JupyterHub.default_url = traitlets.Undefined

Dict authority:dict(files). Specify the key, cert, and/or
ca file for an authority. This is useful for externally managed
proxies that wish to use internal_ssl.

The files dict has this format (you must specify at least a cert)::

{
'key': '/path/to/key.key',
'cert': '/path/to/cert.crt',
'ca': '/path/to/ca.crt'
}

The authorities you can override: 'hub-ca', 'notebooks-ca',
'proxy-api-ca', 'proxy-client-ca', and 'services-ca'.

Use with internal_ssl
Default: {}
c.JupyterHub.external_ssl_authorities = {}

Register extra tornado Handlers for jupyterhub.

Should be of the form ``("<regex>", Handler)``

The Hub prefix will be added, so `/my-page` will be served at `/hub/my-page`.
Default: []
c.JupyterHub.extra_handlers = []

DEPRECATED: use output redirection instead, e.g.

jupyterhub &>> /var/log/jupyterhub.log
Default: ''
c.JupyterHub.extra_log_file = ''

Extra log handlers to set on JupyterHub logger
Default: []
c.JupyterHub.extra_log_handlers = []

Generate certs used for internal ssl
Default: False
c.JupyterHub.generate_certs = False

Generate default config file
Default: False
c.JupyterHub.generate_config = False

The URL on which the Hub will listen. This is a private URL for internal
communication. Typically set in combination with hub_connect_url. If a unix
socket, hub_connect_url **must** also be set.

For example:

"http://127.0.0.1:8081"
"unix+http://%2Fsrv%2Fjupyterhub%2Fjupyterhub.sock"

.. versionadded:: 0.9
Default: ''
c.JupyterHub.hub_bind_url = ''

The ip or hostname for proxies and spawners to use
for connecting to the Hub.

Use when the bind address (`hub_ip`) is 0.0.0.0, :: or otherwise different
from the connect address.

Default: when `hub_ip` is 0.0.0.0 or ::, use `socket.gethostname()`,
otherwise use `hub_ip`.

Note: Some spawners or proxy implementations might not support hostnames. Check your
spawner or proxy documentation to see if they have extra requirements.

.. versionadded:: 0.8
Default: ''
c.JupyterHub.hub_connect_ip = ''

DEPRECATED

Use hub_connect_url

.. versionadded:: 0.8

.. deprecated:: 0.9
Use hub_connect_url
Default: 0
c.JupyterHub.hub_connect_port = 0

The URL for connecting to the Hub. Spawners, services, and the proxy will use
this URL to talk to the Hub.

Only needs to be specified if the default hub URL is not connectable (e.g.
using a unix+http:// bind url).

.. seealso::
JupyterHub.hub_connect_ip
JupyterHub.hub_bind_url

.. versionadded:: 0.9
Default: ''
c.JupyterHub.hub_connect_url = ''

The ip address for the Hub process to *bind* to.

By default, the hub listens on localhost only. This address must be accessible from
the proxy and user servers. You may need to set this to a public ip or '' for all
interfaces if the proxy or user servers are in containers or on a different host.

See `hub_connect_ip` for cases where the bind and connect address should differ,
or `hub_bind_url` for setting the full bind URL.
Default: '127.0.0.1'
c.JupyterHub.hub_ip = '127.0.0.1'

The internal port for the Hub process.

This is the internal port of the hub itself. It should never be accessed directly.
See JupyterHub.port for the public port to use when accessing jupyterhub.
It is rare that this port should be set except in cases of port conflict.

See also `hub_ip` for the ip and `hub_bind_url` for setting the full
bind URL.
Default: 8081
c.JupyterHub.hub_port = 8081

The routing prefix for the Hub itself.

Override to send only a subset of traffic to the Hub. Default is to use the
Hub as the default route for all requests.

This is necessary for normal jupyterhub operation, as the Hub must receive
requests for e.g. `/user/:name` when the user's server is not running.

However, some deployments using only the JupyterHub API may want to handle
these events themselves, in which case they can register their own default
target with the proxy and set e.g. `hub_routespec = /hub/` to serve only the
hub's own pages, or even `/hub/api/` for api-only operation.

Note: hub_routespec must include the base_url, if any.

.. versionadded:: 1.4
Default: '/'
c.JupyterHub.hub_routespec = '/'

Trigger implicit spawns after this many seconds.

When a user visits a URL for a server that's not running,
they are shown a page indicating that the requested server
is not running with a button to spawn the server.

Setting this to a positive value will redirect the user
after this many seconds, effectively clicking this button
automatically for the users,
automatically beginning the spawn process.

Warning: this can result in errors and surprising behavior
when sharing access URLs to actual servers,
since the wrong server is likely to be started.
Default: 0
c.JupyterHub.implicit_spawn_seconds = 0

Timeout (in seconds) to wait for spawners to initialize

Checking if spawners are healthy can take a long time if many spawners are
active at hub start time.

If it takes longer than this timeout to check, init_spawner will be left to
complete in the background and the http server is allowed to start.

A timeout of -1 means wait forever, which can mean a slow startup of the Hub
but ensures that the Hub is fully consistent by the time it starts responding
to requests. This matches the behavior of jupyterhub 1.0.

.. versionadded: 1.1.0
Default: 10
c.JupyterHub.init_spawners_timeout = 10

The location to store certificates automatically created by
JupyterHub.

Use with internal_ssl
Default: 'internal-ssl'
c.JupyterHub.internal_certs_location = 'internal-ssl'

Enable SSL for all internal communication

This enables end-to-end encryption between all JupyterHub components.
JupyterHub will automatically create the necessary certificate
authority and sign notebook certificates as they're created.
Default: False
c.JupyterHub.internal_ssl = False

The public facing ip of the whole JupyterHub application
(specifically referred to as the proxy).

This is the address on which the proxy will listen. The default is to
listen on all interfaces. This is the only address through which JupyterHub
should be accessed by users.

.. deprecated: 0.9
Use JupyterHub.bind_url
Default: ''
c.JupyterHub.ip = ''

Supply extra arguments that will be passed to Jinja environment.
Default: {}
c.JupyterHub.jinja_environment_options = {}

Interval (in seconds) at which to update last-activity timestamps.
Default: 300
c.JupyterHub.last_activity_interval = 300

Dict of 'group': ['usernames'] to load at startup.

This strictly *adds* groups and users to groups.

Loading one set of groups, then starting JupyterHub again with a different
set will not remove users or groups from previous launches.
That must be done through the API.
Default: {}
c.JupyterHub.load_groups = {}

List of predefined role dictionaries to load at startup.

For instance::

load_roles = [
{
'name': 'teacher',
'description': 'Access to users' information and group membership',
'scopes': ['users', 'groups'],
'users': ['cyclops', 'gandalf'],
'services': [],
'groups': []
}
]

All keys apart from 'name' are optional.
See all the available scopes in the JupyterHub REST API documentation.

Default roles are defined in roles.py.
Default: []
c.JupyterHub.load_roles = []

The date format used by logging formatters for %(asctime)s
See also: Application.log_datefmt
c.JupyterHub.log_datefmt = '%Y-%m-%d %H:%M:%S'

The Logging format template
See also: Application.log_format
c.JupyterHub.log_format = '[%(name)s]%(highlevel)s %(message)s'

Set the log level by value or name.
See also: Application.log_level
c.JupyterHub.log_level = 30

Specify path to a logo image to override the Jupyter logo in the banner.
Default: ''
c.JupyterHub.logo_file = ''

Maximum number of concurrent named servers that can be created by a user at a
time.

Setting this can limit the total resources a user can consume.

If set to 0, no limit is enforced.
Default: 0
c.JupyterHub.named_server_limit_per_user = 0

Expiry (in seconds) of OAuth access tokens.

The default is to expire when the cookie storing them expires,
according to `cookie_max_age_days` config.

These are the tokens stored in cookies when you visit
a single-user server or service.
When they expire, you must re-authenticate with the Hub,
even if your Hub authentication is still valid.
If your Hub authentication is valid,
logging in may be a transparent redirect as you refresh the page.

This does not affect JupyterHub API tokens in general,
which do not expire by default.
Only tokens issued during the oauth flow
accessing services and single-user servers are affected.

.. versionadded:: 1.4
OAuth token expires_in was not previously configurable.
.. versionchanged:: 1.4
Default now uses cookie_max_age_days so that oauth tokens
which are generally stored in cookies,
expire when the cookies storing them expire.
Previously, it was one hour.
Default: 0
c.JupyterHub.oauth_token_expires_in = 0

File to write PID
Useful for daemonizing JupyterHub.
Default: ''
c.JupyterHub.pid_file = ''

The public facing port of the proxy.

This is the port on which the proxy will listen.
This is the only port through which JupyterHub
should be accessed by users.

.. deprecated: 0.9
Use JupyterHub.bind_url
Default: 8000
c.JupyterHub.port = 8000

DEPRECATED since version 0.8 : Use ConfigurableHTTPProxy.api_url
Default: ''
c.JupyterHub.proxy_api_ip = ''

DEPRECATED since version 0.8 : Use ConfigurableHTTPProxy.api_url
Default: 0
c.JupyterHub.proxy_api_port = 0

DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.auth_token
Default: ''
c.JupyterHub.proxy_auth_token = ''

DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.check_running_interval
Default: 5
c.JupyterHub.proxy_check_interval = 5

The class to use for configuring the JupyterHub proxy.

Should be a subclass of :class:`jupyterhub.proxy.Proxy`.

.. versionchanged:: 1.0
proxies may be registered via entry points,
e.g. `c.JupyterHub.proxy_class = 'traefik'`

Currently installed:
- configurable-http-proxy: jupyterhub.proxy.ConfigurableHTTPProxy
- default: jupyterhub.proxy.ConfigurableHTTPProxy
Default: 'jupyterhub.proxy.ConfigurableHTTPProxy'
c.JupyterHub.proxy_class = 'jupyterhub.proxy.ConfigurableHTTPProxy'

DEPRECATED since version 0.8. Use ConfigurableHTTPProxy.command
Default: []
c.JupyterHub.proxy_cmd = []

Recreate all certificates used within JupyterHub on restart.

Note: enabling this feature requires restarting all notebook servers.

Use with internal_ssl
Default: False
c.JupyterHub.recreate_internal_certs = False

Redirect user to server (if running), instead of control panel.
Default: True
c.JupyterHub.redirect_to_server = True

Purge and reset the database.
Default: False
c.JupyterHub.reset_db = False

Interval (in seconds) at which to check connectivity of services with web
endpoints.
Default: 60
c.JupyterHub.service_check_interval = 60

Dict of token:servicename to be loaded into the database.

Allows ahead-of-time generation of API tokens for use by externally
managed services.
Default: {}
c.JupyterHub.service_tokens = {}

List of service specification dictionaries.

A service

For instance::

services = [
{
'name': 'cull_idle',
'command': ['/path/to/cull_idle_servers.py'],
},
{
'name': 'formgrader',
'url': 'http://127.0.0.1:1234',
'api_token': 'super-secret',
'environment':
}
]
Default: []
c.JupyterHub.services = []

Instead of starting the Application, dump configuration to stdout
See also: Application.show_config
c.JupyterHub.show_config = False

Instead of starting the Application, dump configuration to stdout (as JSON)
See also: Application.show_config_json
c.JupyterHub.show_config_json = False

Shuts down all user servers on logout
Default: False
c.JupyterHub.shutdown_on_logout = False

The class to use for spawning single-user servers.

Should be a subclass of :class:`jupyterhub.spawner.Spawner`.

.. versionchanged:: 1.0
spawners may be registered via entry points,
e.g. `c.JupyterHub.spawner_class = 'localprocess'`

Currently installed:
- default: jupyterhub.spawner.LocalProcessSpawner
- localprocess: jupyterhub.spawner.LocalProcessSpawner
- simple: jupyterhub.spawner.SimpleLocalProcessSpawner
Default: 'jupyterhub.spawner.LocalProcessSpawner'
c.JupyterHub.spawner_class = 'jupyterhub.spawner.LocalProcessSpawner'

Path to SSL certificate file for the public facing interface of the proxy

When setting this, you should also set ssl_key
Default: ''
c.JupyterHub.ssl_cert = ''

Path to SSL key file for the public facing interface of the proxy

When setting this, you should also set ssl_cert
Default: ''
c.JupyterHub.ssl_key = ''

Host to send statsd metrics to. An empty string (the default) disables sending
metrics.
Default: ''
c.JupyterHub.statsd_host = ''

Port on which to send statsd metrics about the hub
Default: 8125
c.JupyterHub.statsd_port = 8125

Prefix to use for all metrics sent by jupyterhub to statsd
Default: 'jupyterhub'
c.JupyterHub.statsd_prefix = 'jupyterhub'

Run single-user servers on subdomains of this host.

This should be the full `https://hub.domain.tld[:port]`.

Provides additional cross-site protections for javascript served by
single-user servers.

Requires `<username>.hub.domain.tld` to resolve to the same host as
`hub.domain.tld`.

In general, this is most easily achieved with wildcard DNS.

When using SSL (i.e. always) this also requires a wildcard SSL
certificate.
Default: ''
c.JupyterHub.subdomain_host = ''

Paths to search for jinja templates, before using the default templates.
Default: []
c.JupyterHub.template_paths = []

Extra variables to be passed into jinja templates
Default: {}
c.JupyterHub.template_vars = {}

Extra settings overrides to pass to the tornado application.
Default: {}
c.JupyterHub.tornado_settings = {}

Trust user-provided tokens (via JupyterHub.service_tokens)
to have good entropy.

If you are not inserting additional tokens via configuration file,
this flag has no effect.

In JupyterHub 0.8, internally generated tokens do not
pass through additional hashing because the hashing is costly
and does not increase the entropy of already-good UUIDs.

User-provided tokens, on the other hand, are not trusted to have good entropy by default,
and are passed through many rounds of hashing to stretch the entropy of the key
(i.e. user-provided tokens are treated as passwords instead of random keys).
These keys are more costly to check.

If your inserted tokens are generated by a good-quality mechanism,
e.g. `openssl rand -hex 32`, then you can set this flag to True
to reduce the cost of checking authentication tokens.
Default: False
c.JupyterHub.trust_user_provided_tokens = False

Names to include in the subject alternative name.

These names will be used for server name verification. This is useful
if JupyterHub is being run behind a reverse proxy or services using ssl
are on different hosts.

Use with internal_ssl
Default: []
c.JupyterHub.trusted_alt_names = []

Downstream proxy IP addresses to trust.

This sets the list of IP addresses that are trusted and skipped when processing
the `X-Forwarded-For` header. For example, if an external proxy is used for TLS
termination, its IP address should be added to this list to ensure the correct
client IP addresses are recorded in the logs instead of the proxy server's IP
address.
Default: []
c.JupyterHub.trusted_downstream_ips = []

Upgrade the database automatically on start.

Only safe if database is regularly backed up.
Only SQLite databases will be backed up to a local file automatically.
Default: False
c.JupyterHub.upgrade_db = False

Return 503 rather than 424 when request comes in for a non-running server.

Prior to JupyterHub 2.0, we returned a 503 when any request came in for a user
server that was currently not running. By default, JupyterHub 2.0 will return
a 424 - this makes operational metric dashboards more useful.

JupyterLab < 3.2 expected the 503 to know if the user server is no longer
running, and prompted the user to start their server. Set this config to true
to retain the old behavior, so JupyterLab < 3.2 can continue to show the
appropriate UI when the user server is stopped.

This option will be removed in a future release.
Default: False
c.JupyterHub.use_legacy_stopped_server_status_code = False

Callable to affect behavior of /user-redirect/

Receives 4 parameters: 1. path - URL path that was provided after /user-
redirect/ 2. request - A Tornado HTTPServerRequest representing the current
request. 3. user - The currently authenticated user. 4. base_url - The
base_url of the current hub, for relative redirects

It should return the new URL to redirect to, or None to preserve current
behavior.
Default: None
c.JupyterHub.user_redirect_hook = None

#--
Spawner(LoggingConfigurable) configuration
#--
Base class for spawning single-user notebook servers.

Subclass this, and override the following methods:

- load_state
- get_state
- start
- stop
- poll

As JupyterHub supports multiple users, an instance of the Spawner subclass
is created for each user. If there are 20 JupyterHub users, there will be 20
instances of the subclass.

Extra arguments to be passed to the single-user server.

Some spawners allow shell-style expansion here, allowing you to use
environment variables here. Most, including the default, do not. Consult the
documentation for your spawner to verify!
Default: []
c.Spawner.args = []

An optional hook function that you can implement to pass `auth_state` to the
spawner after it has been initialized but before it starts. The `auth_state`
dictionary may be set by the `.authenticate()` method of the authenticator.
This hook enables you to pass some or all of that information to your spawner.

Example::

def userdata_hook(spawner, auth_state):
spawner.userdata = auth_state["userdata"]

c.Spawner.auth_state_hook = userdata_hook
Default: None
c.Spawner.auth_state_hook = None

The command used for starting the single-user server.

Provide either a string or a list containing the path to the startup script
command. Extra arguments, other than this path, should be provided via `args`.

This is usually set if you want to start the single-user server in a different
python environment (with virtualenv/conda) than JupyterHub itself.

Some spawners allow shell-style expansion here, allowing you to use
environment variables. Most, including the default, do not. Consult the
documentation for your spawner to verify!
Default: ['jupyterhub-singleuser']
c.Spawner.cmd = ['jupyterhub-singleuser']

Maximum number of consecutive failures to allow before shutting down
JupyterHub.

This helps JupyterHub recover from a certain class of problem preventing
launch in contexts where the Hub is automatically restarted (e.g. systemd,
docker, kubernetes).

A limit of 0 means no limit and consecutive failures will not be tracked.
Default: 0
c.Spawner.consecutive_failure_limit = 0

Minimum number of cpu-cores a single-user notebook server is guaranteed to
have available.

If this value is set to 0.5, allows use of 50% of one CPU. If this value is
set to 2, allows use of up to 2 CPUs.

**This is a configuration setting. Your spawner must implement support for the
limit to work.** The default spawner, `LocalProcessSpawner`, does **not**
implement this support. A custom spawner **must** add support for this setting
for it to be enforced.
Default: None
c.Spawner.cpu_guarantee = None

Maximum number of cpu-cores a single-user notebook server is allowed to use.

If this value is set to 0.5, allows use of 50% of one CPU. If this value is
set to 2, allows use of up to 2 CPUs.

The single-user notebook server will never be scheduled by the kernel to use
more cpu-cores than this. There is no guarantee that it can access this many
cpu-cores.

**This is a configuration setting. Your spawner must implement support for the
limit to work.** The default spawner, `LocalProcessSpawner`, does **not**
implement this support. A custom spawner **must** add support for this setting
for it to be enforced.
Default: None
c.Spawner.cpu_limit = None

Enable debug-logging of the single-user server
Default: False
c.Spawner.debug = False

The URL the single-user server should start in.

`{username}` will be expanded to the user's username

Example uses:

- You can set `notebook_dir` to `/` and `default_url` to `/tree/home/{username}` to allow people to
navigate the whole filesystem from their notebook server, but still start in their home directory.
- Start with `/notebooks` instead of `/tree` if `default_url` points to a notebook instead of a directory.
- You can set this to `/lab` to have JupyterLab start by default, rather than Jupyter Notebook.
Default: ''
c.Spawner.default_url = ''

Disable per-user configuration of single-user servers.

When starting the user's single-user server, any config file found in the
user's $HOME directory will be ignored.

Note: a user could circumvent this if the user modifies their Python
environment, such as when they have their own conda environments / virtualenvs
/ containers.
Default: False
c.Spawner.disable_user_config = False

List of environment variables for the single-user server to inherit from the
JupyterHub process.

This list is used to ensure that sensitive information in the JupyterHub
process's environment (such as `CONFIGPROXY_AUTH_TOKEN`) is not passed to the
single-user server's process.
Default: ['PATH', 'PYTHONPATH', 'CONDA_ROOT', 'CONDA_DEFAULT_ENV', 'VIRTUAL_ENV', 'LANG', 'LC_ALL', 'JUPYTERHUB_SINGLEUSER_APP']
c.Spawner.env_keep = ['PATH', 'PYTHONPATH', 'CONDA_ROOT', 'CONDA_DEFAULT_ENV', 'VIRTUAL_ENV', 'LANG', 'LC_ALL', 'JUPYTERHUB_SINGLEUSER_APP']

Extra environment variables to set for the single-user server's process.

Environment variables that end up in the single-user server's process come from 3 sources:
- This `environment` configurable
- The JupyterHub process' environment variables that are listed in `env_keep`
- Variables to establish contact between the single-user notebook and the hub (such as JUPYTERHUB_API_TOKEN)

The `environment` configurable should be set by JupyterHub administrators to
add installation specific environment variables. It is a dict where the key is
the name of the environment variable, and the value can be a string or a
callable. If it is a callable, it will be called with one parameter (the
spawner instance), and should return a string fairly quickly (no blocking
operations please!).

Note that the spawner class' interface is not guaranteed to be exactly same
across upgrades, so if you are using the callable take care to verify it
continues to work after upgrades!

.. versionchanged:: 1.2
environment from this configuration has highest priority,
allowing override of 'default' env variables,
such as JUPYTERHUB_API_URL.
Default: {}
c.Spawner.environment = {}

Timeout (in seconds) before giving up on a spawned HTTP server

Once a server has successfully been spawned, this is the amount of time we
wait before assuming that the server is unable to accept connections.
Default: 30
c.Spawner.http_timeout = 30

The URL the single-user server should connect to the Hub.

If the Hub URL set in your JupyterHub config is not reachable from spawned
notebooks, you can set differnt URL by this config.

Is None if you don't need to change the URL.
Default: None
c.Spawner.hub_connect_url = None

The IP address (or hostname) the single-user server should listen on.

Usually either '127.0.0.1' (default) or '0.0.0.0'.

The JupyterHub proxy implementation should be able to send packets to this
interface.

Subclasses which launch remotely or in containers should override the default
to '0.0.0.0'.

.. versionchanged:: 2.0
Default changed to '127.0.0.1', from ''.
In most cases, this does not result in a change in behavior,
as '' was interpreted as 'unspecified',
which used the subprocesses' own default, itself usually '127.0.0.1'.
Default: '127.0.0.1'
c.Spawner.ip = '127.0.0.1'

Minimum number of bytes a single-user notebook server is guaranteed to have
available.

Allows the following suffixes:
- K -> Kilobytes
- M -> Megabytes
- G -> Gigabytes
- T -> Terabytes

**This is a configuration setting. Your spawner must implement support for the
limit to work.** The default spawner, `LocalProcessSpawner`, does **not**
implement this support. A custom spawner **must** add support for this setting
for it to be enforced.
Default: None
c.Spawner.mem_guarantee = None

Maximum number of bytes a single-user notebook server is allowed to use.

Allows the following suffixes:
- K -> Kilobytes
- M -> Megabytes
- G -> Gigabytes
- T -> Terabytes

If the single user server tries to allocate more memory than this, it will
fail. There is no guarantee that the single-user notebook server will be able
to allocate this much memory - only that it can not allocate more than this.

**This is a configuration setting. Your spawner must implement support for the
limit to work.** The default spawner, `LocalProcessSpawner`, does **not**
implement this support. A custom spawner **must** add support for this setting
for it to be enforced.
Default: None
c.Spawner.mem_limit = None

Path to the notebook directory for the single-user server.

The user sees a file listing of this directory when the notebook interface is
started. The current interface does not easily allow browsing beyond the
subdirectories in this directory's tree.

`~` will be expanded to the home directory of the user, and {username} will be
replaced with the name of the user.

Note that this does *not* prevent users from accessing files outside of this
path! They can do so with many other means.
Default: ''
c.Spawner.notebook_dir = ''

Allowed roles for oauth tokens.

This sets the maximum and default roles
assigned to oauth tokens issued by a single-user server's
oauth client (i.e. tokens stored in browsers after authenticating with the server),
defining what actions the server can take on behalf of logged-in users.

Default is an empty list, meaning minimal permissions to identify users,
no actions can be taken on their behalf.
Default: traitlets.Undefined
c.Spawner.oauth_roles = traitlets.Undefined

An HTML form for options a user can specify on launching their server.

The surrounding `<form>` element and the submit button are already provided.

For example:

.. code:: html

Set your key:
<input name="key" val="default_key"></input>

Choose a letter:
<select name="letter" multiple="true">
<option value="A">The letter A</option>
<option value="B">The letter B</option>
</select>

The data from this form submission will be passed on to your spawner in
`self.user_options`

Instead of a form snippet string, this could also be a callable that takes as
one parameter the current spawner instance and returns a string. The callable
will be called asynchronously if it returns a future, rather than a str. Note
that the interface of the spawner class is not deemed stable across versions,
so using this functionality might cause your JupyterHub upgrades to break.
Default: traitlets.Undefined
c.Spawner.options_form = traitlets.Undefined

Interpret HTTP form data

Form data will always arrive as a dict of lists of strings. Override this
function to understand single-values, numbers, etc.

This should coerce form data into the structure expected by self.user_options,
which must be a dict, and should be JSON-serializeable, though it can contain
bytes in addition to standard JSON data types.

This method should not have any side effects. Any handling of `user_options`
should be done in `.start()` to ensure consistent behavior across servers
spawned via the API and form submission page.

Instances will receive this data on self.user_options, after passing through
this function, prior to `Spawner.start`.

.. versionchanged:: 1.0
user_options are persisted in the JupyterHub database to be reused
on subsequent spawns if no options are given.
user_options is serialized to JSON as part of this persistence
(with additional support for bytes in case of uploaded file data),
and any non-bytes non-jsonable values will be replaced with None
if the user_options are re-used.
Default: traitlets.Undefined
c.Spawner.options_from_form = traitlets.Undefined

Interval (in seconds) on which to poll the spawner for single-user server's
status.

At every poll interval, each spawner's `.poll` method is called, which checks
if the single-user server is still running. If it isn't running, then
JupyterHub modifies its own state accordingly and removes appropriate routes
from the configurable proxy.
Default: 30
c.Spawner.poll_interval = 30

The port for single-user servers to listen on.

Defaults to `0`, which uses a randomly allocated port number each time.

If set to a non-zero value, all Spawners will use the same port, which only
makes sense if each server is on a different address, e.g. in containers.

New in version 0.7.
Default: 0
c.Spawner.port = 0

An optional hook function that you can implement to do work after the spawner
stops.

This can be set independent of any concrete spawner implementation.
Default: None
c.Spawner.post_stop_hook = None

An optional hook function that you can implement to do some bootstrapping work
before the spawner starts. For example, create a directory for your user or
load initial content.

This can be set independent of any concrete spawner implementation.

This maybe a coroutine.

Example::

from subprocess import check_call
def my_hook(spawner):
username = spawner.user.name
check_call(['./examples/bootstrap-script/bootstrap.sh', username])

c.Spawner.pre_spawn_hook = my_hook
Default: None
c.Spawner.pre_spawn_hook = None

List of SSL alt names

May be set in config if all spawners should have the same value(s),
or set at runtime by Spawner that know their names.
Default: []
c.Spawner.ssl_alt_names = []

Whether to include DNS:localhost, IP:127.0.0.1 in alt names
Default: True
c.Spawner.ssl_alt_names_include_local = True

Timeout (in seconds) before giving up on starting of single-user server.

This is the timeout for start to return, not the timeout for the server to
respond. Callers of spawner.start will assume that startup has failed if it
takes longer than this. start should return when the server process is started
and its location is known.
Default: 60
c.Spawner.start_timeout = 60

#--
Authenticator(LoggingConfigurable) configuration
#--
Base class for implementing an authentication provider for JupyterHub

Set of users that will have admin rights on this JupyterHub.

Note: As of JupyterHub 2.0, full admin rights should not be required, and more
precise permissions can be managed via roles.

Admin users have extra privileges:
- Use the admin panel to see list of users logged in
- Add / remove users in some authenticators
- Restart / halt the hub
- Start / stop users' single-user servers
- Can access each individual users' single-user server (if configured)

Admin access should be treated the same way root access is.

Defaults to an empty set, in which case no user has admin access.
Default: set()
c.Authenticator.admin_users = set()

Set of usernames that are allowed to log in.

Use this with supported authenticators to restrict which users can log in.
This is an additional list that further restricts users, beyond whatever
restrictions the authenticator has in place. Any user in this list is granted
the 'user' role on hub startup.

If empty, does not perform any additional restriction.

.. versionchanged:: 1.2
`Authenticator.whitelist` renamed to `allowed_users`
Default: set()
c.Authenticator.allowed_users = set()

The max age (in seconds) of authentication info
before forcing a refresh of user auth info.

Refreshing auth info allows, e.g. requesting/re-validating auth
tokens.

See :meth:`.refresh_user` for what happens when user auth info is refreshed
(nothing by default).
Default: 300
c.Authenticator.auth_refresh_age = 300

Automatically begin the login process

rather than starting with a "Login with..." link at `/hub/login`

To work, `.login_url()` must give a URL other than the default `/hub/login`,
such as an oauth handler or another automatic login handler,
registered with `.get_handlers()`.

.. versionadded:: 0.8
Default: False
c.Authenticator.auto_login = False

Automatically begin login process for OAuth2 authorization requests

When another application is using JupyterHub as OAuth2 provider, it sends
users to `/hub/api/oauth2/authorize`. If the user isn't logged in already, and
auto_login is not set, the user will be dumped on the hub's home page, without
any context on what to do next.

Setting this to true will automatically redirect users to login if they aren't
logged in *only* on the `/hub/api/oauth2/authorize` endpoint.

.. versionadded:: 1.5
Default: False
c.Authenticator.auto_login_oauth2_authorize = False

Set of usernames that are not allowed to log in.

Use this with supported authenticators to restrict which users can not log in.
This is an additional block list that further restricts users, beyond whatever
restrictions the authenticator has in place.

If empty, does not perform any additional restriction.

.. versionadded: 0.9

.. versionchanged:: 1.2
`Authenticator.blacklist` renamed to `blocked_users`
Default: set()
c.Authenticator.blocked_users = set()

Delete any users from the database that do not pass validation

When JupyterHub starts, `.add_user` will be called
on each user in the database to verify that all users are still valid.

If `delete_invalid_users` is True,
any users that do not pass validation will be deleted from the database.
Use this if users might be deleted from an external system,
such as local user accounts.

If False (default), invalid users remain in the Hub's database
and a warning will be issued.
This is the default to avoid data loss due to config changes.
Default: False
c.Authenticator.delete_invalid_users = False

Enable persisting auth_state (if available).

auth_state will be encrypted and stored in the Hub's database.
This can include things like authentication tokens, etc.
to be passed to Spawners as environment variables.

Encrypting auth_state requires the cryptography package.

Additionally, the JUPYTERHUB_CRYPT_KEY environment variable must
contain one (or more, separated by ;) 32B encryption keys.
These can be either base64 or hex-encoded.

If encryption is unavailable, auth_state cannot be persisted.

New in JupyterHub 0.8
Default: False
c.Authenticator.enable_auth_state = False

An optional hook function that you can implement to do some bootstrapping work
during authentication. For example, loading user account details from an
external system.

This function is called after the user has passed all authentication checks
and is ready to successfully authenticate. This function must return the
authentication dict reguardless of changes to it.

This maybe a coroutine.

.. versionadded: 1.0

Example::

import os, pwd
def my_hook(authenticator, handler, authentication):
user_data = pwd.getpwnam(authentication['name'])
spawn_data = {
'pw_data': user_data
'gid_list': os.getgrouplist(authentication['name'], user_data.pw_gid)
}

if authentication['auth_state'] is None:
authentication['auth_state'] = {}
authentication['auth_state']['spawn_data'] = spawn_data

return authentication

c.Authenticator.post_auth_hook = my_hook
Default: None
c.Authenticator.post_auth_hook = None

Force refresh of auth prior to spawn.

This forces :meth:`.refresh_user` to be called prior to launching
a server, to ensure that auth state is up-to-date.

This can be important when e.g. auth tokens that may have expired
are passed to the spawner via environment variables from auth_state.

If refresh_user cannot refresh the user auth data,
launch will fail until the user logs in again.
Default: False
c.Authenticator.refresh_pre_spawn = False

Dictionary mapping authenticator usernames to JupyterHub users.

Primarily used to normalize OAuth user names to local users.
Default: {}
c.Authenticator.username_map = {}

Regular expression pattern that all valid usernames must match.

If a username does not match the pattern specified here, authentication will
not be attempted.

If not set, allow any username.
Default: ''
c.Authenticator.username_pattern = ''

Deprecated, use `Authenticator.allowed_users`
Default: set()
c.Authenticator.whitelist = set()

#--
CryptKeeper(SingletonConfigurable) configuration
#--
Encapsulate encryption configuration

Use via the encryption_config singleton below.

Default: []
c.CryptKeeper.keys = []

The number of threads to allocate for encryption
Default: 2
c.CryptKeeper.n_threads = 2

JupyterHub help command output

This section contains the output of the command jupyterhub --help-all.

Start a multi-user Jupyter Notebook server

 Spawns a configurable-http-proxy and multi-user Hub,
 which authenticates users and spawns single-user Notebook servers
 on behalf of users.

Subcommands
===========
Subcommands are launched as `jupyterhub cmd [args]`. For information on using
subcommand 'cmd', do: `jupyterhub cmd -h`.

token
 Generate an API token for a user
upgrade-db
 Upgrade your JupyterHub state database to the current version.

Options
=======
The options below are convenience aliases to configurable class-options,
as listed in the "Equivalent to" description-line of the aliases.
To see all configurable class-options for some <cmd>, use:
 <cmd> --help-all

--debug
 set log level to logging.DEBUG (maximize logging output)
 Equivalent to: [--Application.log_level=10]
--show-config
 Show the application's configuration (human-readable format)
 Equivalent to: [--Application.show_config=True]
--show-config-json
 Show the application's configuration (json format)
 Equivalent to: [--Application.show_config_json=True]
--generate-config
 generate default config file
 Equivalent to: [--JupyterHub.generate_config=True]
--generate-certs
 generate certificates used for internal ssl
 Equivalent to: [--JupyterHub.generate_certs=True]
--no-db
 disable persisting state database to disk
 Equivalent to: [--JupyterHub.db_url=sqlite:///:memory:]
--upgrade-db
 Automatically upgrade the database if needed on startup.

 Only safe if the database has been backed up.
 Only SQLite database files will be backed up automatically.
 Equivalent to: [--JupyterHub.upgrade_db=True]
--no-ssl
 [DEPRECATED in 0.7: does nothing]
 Equivalent to: [--JupyterHub.confirm_no_ssl=True]
--base-url=<URLPrefix>
 The base URL of the entire application.
 Add this to the beginning of all JupyterHub URLs.
 Use base_url to run JupyterHub within an existing website.
 .. deprecated: 0.9
 Use JupyterHub.bind_url
 Default: '/'
 Equivalent to: [--JupyterHub.base_url]
-y=<Bool>
 Answer yes to any questions (e.g. confirm overwrite)
 Default: False
 Equivalent to: [--JupyterHub.answer_yes]
--ssl-key=<Unicode>
 Path to SSL key file for the public facing interface of the proxy
 When setting this, you should also set ssl_cert
 Default: ''
 Equivalent to: [--JupyterHub.ssl_key]
--ssl-cert=<Unicode>
 Path to SSL certificate file for the public facing interface of the proxy
 When setting this, you should also set ssl_key
 Default: ''
 Equivalent to: [--JupyterHub.ssl_cert]
--url=<Unicode>
 The public facing URL of the whole JupyterHub application.
 This is the address on which the proxy will bind.
 Sets protocol, ip, base_url
 Default: 'http://:8000'
 Equivalent to: [--JupyterHub.bind_url]
--ip=<Unicode>
 The public facing ip of the whole JupyterHub application
 (specifically referred to as the proxy).
 This is the address on which the proxy will listen. The default is to
 listen on all interfaces. This is the only address through which JupyterHub
 should be accessed by users.
 .. deprecated: 0.9
 Use JupyterHub.bind_url
 Default: ''
 Equivalent to: [--JupyterHub.ip]
--port=<Int>
 The public facing port of the proxy.
 This is the port on which the proxy will listen.
 This is the only port through which JupyterHub
 should be accessed by users.
 .. deprecated: 0.9
 Use JupyterHub.bind_url
 Default: 8000
 Equivalent to: [--JupyterHub.port]
--pid-file=<Unicode>
 File to write PID
 Useful for daemonizing JupyterHub.
 Default: ''
 Equivalent to: [--JupyterHub.pid_file]
--log-file=<Unicode>
 DEPRECATED: use output redirection instead, e.g.
 jupyterhub &>> /var/log/jupyterhub.log
 Default: ''
 Equivalent to: [--JupyterHub.extra_log_file]
--log-level=<Enum>
 Set the log level by value or name.
 Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL']
 Default: 30
 Equivalent to: [--Application.log_level]
-f=<Unicode>
 The config file to load
 Default: 'jupyterhub_config.py'
 Equivalent to: [--JupyterHub.config_file]
--config=<Unicode>
 The config file to load
 Default: 'jupyterhub_config.py'
 Equivalent to: [--JupyterHub.config_file]
--db=<Unicode>
 url for the database. e.g. `sqlite:///jupyterhub.sqlite`
 Default: 'sqlite:///jupyterhub.sqlite'
 Equivalent to: [--JupyterHub.db_url]

Class options
=============
The command-line option below sets the respective configurable class-parameter:
 --Class.parameter=value
This line is evaluated in Python, so simple expressions are allowed.
For instance, to set `C.a=[0,1,2]`, you may type this:
 --C.a='range(3)'

Application(SingletonConfigurable) options
--
--Application.log_datefmt=<Unicode>
 The date format used by logging formatters for %(asctime)s
 Default: '%Y-%m-%d %H:%M:%S'
--Application.log_format=<Unicode>
 The Logging format template
 Default: '[%(name)s]%(highlevel)s %(message)s'
--Application.log_level=<Enum>
 Set the log level by value or name.
 Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL']
 Default: 30
--Application.show_config=<Bool>
 Instead of starting the Application, dump configuration to stdout
 Default: False
--Application.show_config_json=<Bool>
 Instead of starting the Application, dump configuration to stdout (as JSON)
 Default: False

JupyterHub(Application) options

--JupyterHub.active_server_limit=<Int>
 Maximum number of concurrent servers that can be active at a time.
 Setting this can limit the total resources your users can consume.
 An active server is any server that's not fully stopped. It is considered
 active from the time it has been requested until the time that it has
 completely stopped.
 If this many user servers are active, users will not be able to launch new
 servers until a server is shutdown. Spawn requests will be rejected with a
 429 error asking them to try again.
 If set to 0, no limit is enforced.
 Default: 0
--JupyterHub.active_user_window=<Int>
 Duration (in seconds) to determine the number of active users.
 Default: 1800
--JupyterHub.activity_resolution=<Int>
 Resolution (in seconds) for updating activity
 If activity is registered that is less than activity_resolution seconds more
 recent than the current value, the new value will be ignored.
 This avoids too many writes to the Hub database.
 Default: 30
--JupyterHub.admin_access=<Bool>
 Grant admin users permission to access single-user servers.
 Users should be properly informed if this is enabled.
 Default: False
--JupyterHub.admin_users=<set-item-1>...
 DEPRECATED since version 0.7.2, use Authenticator.admin_users instead.
 Default: set()
--JupyterHub.allow_named_servers=<Bool>
 Allow named single-user servers per user
 Default: False
--JupyterHub.answer_yes=<Bool>
 Answer yes to any questions (e.g. confirm overwrite)
 Default: False
--JupyterHub.api_page_default_limit=<Int>
 The default amount of records returned by a paginated endpoint
 Default: 50
--JupyterHub.api_page_max_limit=<Int>
 The maximum amount of records that can be returned at once
 Default: 200
--JupyterHub.api_tokens=<key-1>=<value-1>...
 PENDING DEPRECATION: consider using services
 Dict of token:username to be loaded into the database.
 Allows ahead-of-time generation of API tokens for use by externally managed services,
 which authenticate as JupyterHub users.
 Consider using services for general services that talk to the
 JupyterHub API.
 Default: {}
--JupyterHub.authenticate_prometheus=<Bool>
 Authentication for prometheus metrics
 Default: True
--JupyterHub.authenticator_class=<EntryPointType>
 Class for authenticating users.
 This should be a subclass of :class:`jupyterhub.auth.Authenticator`
 with an :meth:`authenticate` method that:
 - is a coroutine (asyncio or tornado)
 - returns username on success, None on failure
 - takes two arguments: (handler, data),
 where `handler` is the calling web.RequestHandler,
 and `data` is the POST form data from the login page.
 .. versionchanged:: 1.0
 authenticators may be registered via entry points,
 e.g. `c.JupyterHub.authenticator_class = 'pam'`
 Currently installed:
 - default: jupyterhub.auth.PAMAuthenticator
 - dummy: jupyterhub.auth.DummyAuthenticator
 - null: jupyterhub.auth.NullAuthenticator
 - pam: jupyterhub.auth.PAMAuthenticator
 Default: 'jupyterhub.auth.PAMAuthenticator'
--JupyterHub.base_url=<URLPrefix>
 The base URL of the entire application.
 Add this to the beginning of all JupyterHub URLs.
 Use base_url to run JupyterHub within an existing website.
 .. deprecated: 0.9
 Use JupyterHub.bind_url
 Default: '/'
--JupyterHub.bind_url=<Unicode>
 The public facing URL of the whole JupyterHub application.
 This is the address on which the proxy will bind.
 Sets protocol, ip, base_url
 Default: 'http://:8000'
--JupyterHub.cleanup_proxy=<Bool>
 Whether to shutdown the proxy when the Hub shuts down.
 Disable if you want to be able to teardown the Hub while leaving the
 proxy running.
 Only valid if the proxy was starting by the Hub process.
 If both this and cleanup_servers are False, sending SIGINT to the Hub will
 only shutdown the Hub, leaving everything else running.
 The Hub should be able to resume from database state.
 Default: True
--JupyterHub.cleanup_servers=<Bool>
 Whether to shutdown single-user servers when the Hub shuts down.
 Disable if you want to be able to teardown the Hub while leaving the
 single-user servers running.
 If both this and cleanup_proxy are False, sending SIGINT to the Hub will
 only shutdown the Hub, leaving everything else running.
 The Hub should be able to resume from database state.
 Default: True
--JupyterHub.concurrent_spawn_limit=<Int>
 Maximum number of concurrent users that can be spawning at a time.
 Spawning lots of servers at the same time can cause performance problems for
 the Hub or the underlying spawning system. Set this limit to prevent bursts
 of logins from attempting to spawn too many servers at the same time.
 This does not limit the number of total running servers. See
 active_server_limit for that.
 If more than this many users attempt to spawn at a time, their requests will
 be rejected with a 429 error asking them to try again. Users will have to
 wait for some of the spawning services to finish starting before they can
 start their own.
 If set to 0, no limit is enforced.
 Default: 100
--JupyterHub.config_file=<Unicode>
 The config file to load
 Default: 'jupyterhub_config.py'
--JupyterHub.confirm_no_ssl=<Bool>
 DEPRECATED: does nothing
 Default: False
--JupyterHub.cookie_max_age_days=<Float>
 Number of days for a login cookie to be valid.
 Default is two weeks.
 Default: 14
--JupyterHub.cookie_secret=<Union>
 The cookie secret to use to encrypt cookies.
 Loaded from the JPY_COOKIE_SECRET env variable by default.
 Should be exactly 256 bits (32 bytes).
 Default: traitlets.Undefined
--JupyterHub.cookie_secret_file=<Unicode>
 File in which to store the cookie secret.
 Default: 'jupyterhub_cookie_secret'
--JupyterHub.data_files_path=<Unicode>
 The location of jupyterhub data files (e.g. /usr/local/share/jupyterhub)
 Default: '$HOME/checkouts/readthedocs.org/user_builds/jupyterhub/...
--JupyterHub.db_kwargs=<key-1>=<value-1>...
 Include any kwargs to pass to the database connection.
 See sqlalchemy.create_engine for details.
 Default: {}
--JupyterHub.db_url=<Unicode>
 url for the database. e.g. `sqlite:///jupyterhub.sqlite`
 Default: 'sqlite:///jupyterhub.sqlite'
--JupyterHub.debug_db=<Bool>
 log all database transactions. This has A LOT of output
 Default: False
--JupyterHub.debug_proxy=<Bool>
 DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.debug
 Default: False
--JupyterHub.default_server_name=<Unicode>
 If named servers are enabled, default name of server to spawn or open, e.g.
 by user-redirect.
 Default: ''
--JupyterHub.default_url=<Union>
 The default URL for users when they arrive (e.g. when user directs to "/")
 By default, redirects users to their own server.
 Can be a Unicode string (e.g. '/hub/home') or a callable based on the
 handler object:
 ::
 def default_url_fn(handler):
 user = handler.current_user
 if user and user.admin:
 return '/hub/admin'
 return '/hub/home'
 c.JupyterHub.default_url = default_url_fn
 Default: traitlets.Undefined
--JupyterHub.external_ssl_authorities=<key-1>=<value-1>...
 Dict authority:dict(files). Specify the key, cert, and/or
 ca file for an authority. This is useful for externally managed
 proxies that wish to use internal_ssl.
 The files dict has this format (you must specify at least a cert)::
 {
 'key': '/path/to/key.key',
 'cert': '/path/to/cert.crt',
 'ca': '/path/to/ca.crt'
 }
 The authorities you can override: 'hub-ca', 'notebooks-ca',
 'proxy-api-ca', 'proxy-client-ca', and 'services-ca'.
 Use with internal_ssl
 Default: {}
--JupyterHub.extra_handlers=<list-item-1>...
 Register extra tornado Handlers for jupyterhub.
 Should be of the form ``("<regex>", Handler)``
 The Hub prefix will be added, so `/my-page` will be served at `/hub/my-
 page`.
 Default: []
--JupyterHub.extra_log_file=<Unicode>
 DEPRECATED: use output redirection instead, e.g.
 jupyterhub &>> /var/log/jupyterhub.log
 Default: ''
--JupyterHub.extra_log_handlers=<list-item-1>...
 Extra log handlers to set on JupyterHub logger
 Default: []
--JupyterHub.generate_certs=<Bool>
 Generate certs used for internal ssl
 Default: False
--JupyterHub.generate_config=<Bool>
 Generate default config file
 Default: False
--JupyterHub.hub_bind_url=<Unicode>
 The URL on which the Hub will listen. This is a private URL for internal
 communication. Typically set in combination with hub_connect_url. If a unix
 socket, hub_connect_url **must** also be set.
 For example:
 "http://127.0.0.1:8081"
 "unix+http://%2Fsrv%2Fjupyterhub%2Fjupyterhub.sock"
 .. versionadded:: 0.9
 Default: ''
--JupyterHub.hub_connect_ip=<Unicode>
 The ip or hostname for proxies and spawners to use
 for connecting to the Hub.
 Use when the bind address (`hub_ip`) is 0.0.0.0, :: or otherwise different
 from the connect address.
 Default: when `hub_ip` is 0.0.0.0 or ::, use `socket.gethostname()`,
 otherwise use `hub_ip`.
 Note: Some spawners or proxy implementations might not support hostnames. Check your
 spawner or proxy documentation to see if they have extra requirements.
 .. versionadded:: 0.8
 Default: ''
--JupyterHub.hub_connect_port=<Int>
 DEPRECATED
 Use hub_connect_url
 .. versionadded:: 0.8
 .. deprecated:: 0.9
 Use hub_connect_url
 Default: 0
--JupyterHub.hub_connect_url=<Unicode>
 The URL for connecting to the Hub. Spawners, services, and the proxy will
 use this URL to talk to the Hub.
 Only needs to be specified if the default hub URL is not connectable (e.g.
 using a unix+http:// bind url).
 .. seealso::
 JupyterHub.hub_connect_ip
 JupyterHub.hub_bind_url
 .. versionadded:: 0.9
 Default: ''
--JupyterHub.hub_ip=<Unicode>
 The ip address for the Hub process to *bind* to.
 By default, the hub listens on localhost only. This address must be accessible from
 the proxy and user servers. You may need to set this to a public ip or '' for all
 interfaces if the proxy or user servers are in containers or on a different host.
 See `hub_connect_ip` for cases where the bind and connect address should differ,
 or `hub_bind_url` for setting the full bind URL.
 Default: '127.0.0.1'
--JupyterHub.hub_port=<Int>
 The internal port for the Hub process.
 This is the internal port of the hub itself. It should never be accessed directly.
 See JupyterHub.port for the public port to use when accessing jupyterhub.
 It is rare that this port should be set except in cases of port conflict.
 See also `hub_ip` for the ip and `hub_bind_url` for setting the full
 bind URL.
 Default: 8081
--JupyterHub.hub_routespec=<Unicode>
 The routing prefix for the Hub itself.
 Override to send only a subset of traffic to the Hub. Default is to use the
 Hub as the default route for all requests.
 This is necessary for normal jupyterhub operation, as the Hub must receive
 requests for e.g. `/user/:name` when the user's server is not running.
 However, some deployments using only the JupyterHub API may want to handle
 these events themselves, in which case they can register their own default
 target with the proxy and set e.g. `hub_routespec = /hub/` to serve only the
 hub's own pages, or even `/hub/api/` for api-only operation.
 Note: hub_routespec must include the base_url, if any.
 .. versionadded:: 1.4
 Default: '/'
--JupyterHub.implicit_spawn_seconds=<Float>
 Trigger implicit spawns after this many seconds.
 When a user visits a URL for a server that's not running,
 they are shown a page indicating that the requested server
 is not running with a button to spawn the server.
 Setting this to a positive value will redirect the user
 after this many seconds, effectively clicking this button
 automatically for the users,
 automatically beginning the spawn process.
 Warning: this can result in errors and surprising behavior
 when sharing access URLs to actual servers,
 since the wrong server is likely to be started.
 Default: 0
--JupyterHub.init_spawners_timeout=<Int>
 Timeout (in seconds) to wait for spawners to initialize
 Checking if spawners are healthy can take a long time if many spawners are
 active at hub start time.
 If it takes longer than this timeout to check, init_spawner will be left to
 complete in the background and the http server is allowed to start.
 A timeout of -1 means wait forever, which can mean a slow startup of the Hub
 but ensures that the Hub is fully consistent by the time it starts
 responding to requests. This matches the behavior of jupyterhub 1.0.
 .. versionadded: 1.1.0
 Default: 10
--JupyterHub.internal_certs_location=<Unicode>
 The location to store certificates automatically created by
 JupyterHub.
 Use with internal_ssl
 Default: 'internal-ssl'
--JupyterHub.internal_ssl=<Bool>
 Enable SSL for all internal communication
 This enables end-to-end encryption between all JupyterHub components.
 JupyterHub will automatically create the necessary certificate
 authority and sign notebook certificates as they're created.
 Default: False
--JupyterHub.ip=<Unicode>
 The public facing ip of the whole JupyterHub application
 (specifically referred to as the proxy).
 This is the address on which the proxy will listen. The default is to
 listen on all interfaces. This is the only address through which JupyterHub
 should be accessed by users.
 .. deprecated: 0.9
 Use JupyterHub.bind_url
 Default: ''
--JupyterHub.jinja_environment_options=<key-1>=<value-1>...
 Supply extra arguments that will be passed to Jinja environment.
 Default: {}
--JupyterHub.last_activity_interval=<Int>
 Interval (in seconds) at which to update last-activity timestamps.
 Default: 300
--JupyterHub.load_groups=<key-1>=<value-1>...
 Dict of 'group': ['usernames'] to load at startup.
 This strictly *adds* groups and users to groups.
 Loading one set of groups, then starting JupyterHub again with a different
 set will not remove users or groups from previous launches.
 That must be done through the API.
 Default: {}
--JupyterHub.load_roles=<list-item-1>...
 List of predefined role dictionaries to load at startup.
 For instance::
 load_roles = [
 {
 'name': 'teacher',
 'description': 'Access to users' information and group membership',
 'scopes': ['users', 'groups'],
 'users': ['cyclops', 'gandalf'],
 'services': [],
 'groups': []
 }
]
 All keys apart from 'name' are optional.
 See all the available scopes in the JupyterHub REST API documentation.
 Default roles are defined in roles.py.
 Default: []
--JupyterHub.log_datefmt=<Unicode>
 The date format used by logging formatters for %(asctime)s
 Default: '%Y-%m-%d %H:%M:%S'
--JupyterHub.log_format=<Unicode>
 The Logging format template
 Default: '[%(name)s]%(highlevel)s %(message)s'
--JupyterHub.log_level=<Enum>
 Set the log level by value or name.
 Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL']
 Default: 30
--JupyterHub.logo_file=<Unicode>
 Specify path to a logo image to override the Jupyter logo in the banner.
 Default: ''
--JupyterHub.named_server_limit_per_user=<Int>
 Maximum number of concurrent named servers that can be created by a user at
 a time.
 Setting this can limit the total resources a user can consume.
 If set to 0, no limit is enforced.
 Default: 0
--JupyterHub.oauth_token_expires_in=<Int>
 Expiry (in seconds) of OAuth access tokens.
 The default is to expire when the cookie storing them expires,
 according to `cookie_max_age_days` config.
 These are the tokens stored in cookies when you visit
 a single-user server or service.
 When they expire, you must re-authenticate with the Hub,
 even if your Hub authentication is still valid.
 If your Hub authentication is valid,
 logging in may be a transparent redirect as you refresh the page.
 This does not affect JupyterHub API tokens in general,
 which do not expire by default.
 Only tokens issued during the oauth flow
 accessing services and single-user servers are affected.
 .. versionadded:: 1.4
 OAuth token expires_in was not previously configurable.
 .. versionchanged:: 1.4
 Default now uses cookie_max_age_days so that oauth tokens
 which are generally stored in cookies,
 expire when the cookies storing them expire.
 Previously, it was one hour.
 Default: 0
--JupyterHub.pid_file=<Unicode>
 File to write PID
 Useful for daemonizing JupyterHub.
 Default: ''
--JupyterHub.port=<Int>
 The public facing port of the proxy.
 This is the port on which the proxy will listen.
 This is the only port through which JupyterHub
 should be accessed by users.
 .. deprecated: 0.9
 Use JupyterHub.bind_url
 Default: 8000
--JupyterHub.proxy_api_ip=<Unicode>
 DEPRECATED since version 0.8 : Use ConfigurableHTTPProxy.api_url
 Default: ''
--JupyterHub.proxy_api_port=<Int>
 DEPRECATED since version 0.8 : Use ConfigurableHTTPProxy.api_url
 Default: 0
--JupyterHub.proxy_auth_token=<Unicode>
 DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.auth_token
 Default: ''
--JupyterHub.proxy_check_interval=<Int>
 DEPRECATED since version 0.8: Use
 ConfigurableHTTPProxy.check_running_interval
 Default: 5
--JupyterHub.proxy_class=<EntryPointType>
 The class to use for configuring the JupyterHub proxy.
 Should be a subclass of :class:`jupyterhub.proxy.Proxy`.
 .. versionchanged:: 1.0
 proxies may be registered via entry points,
 e.g. `c.JupyterHub.proxy_class = 'traefik'`
 Currently installed:
 - configurable-http-proxy: jupyterhub.proxy.ConfigurableHTTPProxy
 - default: jupyterhub.proxy.ConfigurableHTTPProxy
 Default: 'jupyterhub.proxy.ConfigurableHTTPProxy'
--JupyterHub.proxy_cmd=<command-item-1>...
 DEPRECATED since version 0.8. Use ConfigurableHTTPProxy.command
 Default: []
--JupyterHub.recreate_internal_certs=<Bool>
 Recreate all certificates used within JupyterHub on restart.
 Note: enabling this feature requires restarting all notebook
 servers.
 Use with internal_ssl
 Default: False
--JupyterHub.redirect_to_server=<Bool>
 Redirect user to server (if running), instead of control panel.
 Default: True
--JupyterHub.reset_db=<Bool>
 Purge and reset the database.
 Default: False
--JupyterHub.service_check_interval=<Int>
 Interval (in seconds) at which to check connectivity of services with web
 endpoints.
 Default: 60
--JupyterHub.service_tokens=<key-1>=<value-1>...
 Dict of token:servicename to be loaded into the database.
 Allows ahead-of-time generation of API tokens for use by externally
 managed services.
 Default: {}
--JupyterHub.services=<list-item-1>...
 List of service specification dictionaries.
 A service
 For instance::
 services = [
 {
 'name': 'cull_idle',
 'command': ['/path/to/cull_idle_servers.py'],
 },
 {
 'name': 'formgrader',
 'url': 'http://127.0.0.1:1234',
 'api_token': 'super-secret',
 'environment':
 }
]
 Default: []
--JupyterHub.show_config=<Bool>
 Instead of starting the Application, dump configuration to stdout
 Default: False
--JupyterHub.show_config_json=<Bool>
 Instead of starting the Application, dump configuration to stdout (as JSON)
 Default: False
--JupyterHub.shutdown_on_logout=<Bool>
 Shuts down all user servers on logout
 Default: False
--JupyterHub.spawner_class=<EntryPointType>
 The class to use for spawning single-user servers.
 Should be a subclass of :class:`jupyterhub.spawner.Spawner`.
 .. versionchanged:: 1.0
 spawners may be registered via entry points,
 e.g. `c.JupyterHub.spawner_class = 'localprocess'`
 Currently installed:
 - default: jupyterhub.spawner.LocalProcessSpawner
 - localprocess: jupyterhub.spawner.LocalProcessSpawner
 - simple: jupyterhub.spawner.SimpleLocalProcessSpawner
 Default: 'jupyterhub.spawner.LocalProcessSpawner'
--JupyterHub.ssl_cert=<Unicode>
 Path to SSL certificate file for the public facing interface of the proxy
 When setting this, you should also set ssl_key
 Default: ''
--JupyterHub.ssl_key=<Unicode>
 Path to SSL key file for the public facing interface of the proxy
 When setting this, you should also set ssl_cert
 Default: ''
--JupyterHub.statsd_host=<Unicode>
 Host to send statsd metrics to. An empty string (the default) disables
 sending metrics.
 Default: ''
--JupyterHub.statsd_port=<Int>
 Port on which to send statsd metrics about the hub
 Default: 8125
--JupyterHub.statsd_prefix=<Unicode>
 Prefix to use for all metrics sent by jupyterhub to statsd
 Default: 'jupyterhub'
--JupyterHub.subdomain_host=<Unicode>
 Run single-user servers on subdomains of this host.
 This should be the full `https://hub.domain.tld[:port]`.
 Provides additional cross-site protections for javascript served by
 single-user servers.
 Requires `<username>.hub.domain.tld` to resolve to the same host as
 `hub.domain.tld`.
 In general, this is most easily achieved with wildcard DNS.
 When using SSL (i.e. always) this also requires a wildcard SSL
 certificate.
 Default: ''
--JupyterHub.template_paths=<list-item-1>...
 Paths to search for jinja templates, before using the default templates.
 Default: []
--JupyterHub.template_vars=<key-1>=<value-1>...
 Extra variables to be passed into jinja templates
 Default: {}
--JupyterHub.tornado_settings=<key-1>=<value-1>...
 Extra settings overrides to pass to the tornado application.
 Default: {}
--JupyterHub.trust_user_provided_tokens=<Bool>
 Trust user-provided tokens (via JupyterHub.service_tokens)
 to have good entropy.
 If you are not inserting additional tokens via configuration file,
 this flag has no effect.
 In JupyterHub 0.8, internally generated tokens do not
 pass through additional hashing because the hashing is costly
 and does not increase the entropy of already-good UUIDs.
 User-provided tokens, on the other hand, are not trusted to have good entropy by default,
 and are passed through many rounds of hashing to stretch the entropy of the key
 (i.e. user-provided tokens are treated as passwords instead of random keys).
 These keys are more costly to check.
 If your inserted tokens are generated by a good-quality mechanism,
 e.g. `openssl rand -hex 32`, then you can set this flag to True
 to reduce the cost of checking authentication tokens.
 Default: False
--JupyterHub.trusted_alt_names=<list-item-1>...
 Names to include in the subject alternative name.
 These names will be used for server name verification. This is useful
 if JupyterHub is being run behind a reverse proxy or services using ssl
 are on different hosts.
 Use with internal_ssl
 Default: []
--JupyterHub.trusted_downstream_ips=<list-item-1>...
 Downstream proxy IP addresses to trust.
 This sets the list of IP addresses that are trusted and skipped when processing
 the `X-Forwarded-For` header. For example, if an external proxy is used for TLS
 termination, its IP address should be added to this list to ensure the correct
 client IP addresses are recorded in the logs instead of the proxy server's IP
 address.
 Default: []
--JupyterHub.upgrade_db=<Bool>
 Upgrade the database automatically on start.
 Only safe if database is regularly backed up.
 Only SQLite databases will be backed up to a local file automatically.
 Default: False
--JupyterHub.use_legacy_stopped_server_status_code=<Bool>
 Return 503 rather than 424 when request comes in for a non-running server.
 Prior to JupyterHub 2.0, we returned a 503 when any request came in for a
 user server that was currently not running. By default, JupyterHub 2.0 will
 return a 424 - this makes operational metric dashboards more useful.
 JupyterLab < 3.2 expected the 503 to know if the user server is no longer
 running, and prompted the user to start their server. Set this config to
 true to retain the old behavior, so JupyterLab < 3.2 can continue to show
 the appropriate UI when the user server is stopped.
 This option will be removed in a future release.
 Default: False
--JupyterHub.user_redirect_hook=<Callable>
 Callable to affect behavior of /user-redirect/
 Receives 4 parameters: 1. path - URL path that was provided after /user-
 redirect/ 2. request - A Tornado HTTPServerRequest representing the current
 request. 3. user - The currently authenticated user. 4. base_url - The
 base_url of the current hub, for relative redirects
 It should return the new URL to redirect to, or None to preserve current
 behavior.
 Default: None

Spawner(LoggingConfigurable) options

--Spawner.args=<list-item-1>...
 Extra arguments to be passed to the single-user server.
 Some spawners allow shell-style expansion here, allowing you to use
 environment variables here. Most, including the default, do not. Consult the
 documentation for your spawner to verify!
 Default: []
--Spawner.auth_state_hook=<Any>
 An optional hook function that you can implement to pass `auth_state` to the
 spawner after it has been initialized but before it starts. The `auth_state`
 dictionary may be set by the `.authenticate()` method of the authenticator.
 This hook enables you to pass some or all of that information to your
 spawner.
 Example::
 def userdata_hook(spawner, auth_state):
 spawner.userdata = auth_state["userdata"]
 c.Spawner.auth_state_hook = userdata_hook
 Default: None
--Spawner.cmd=<command-item-1>...
 The command used for starting the single-user server.
 Provide either a string or a list containing the path to the startup script
 command. Extra arguments, other than this path, should be provided via
 `args`.
 This is usually set if you want to start the single-user server in a
 different python environment (with virtualenv/conda) than JupyterHub itself.
 Some spawners allow shell-style expansion here, allowing you to use
 environment variables. Most, including the default, do not. Consult the
 documentation for your spawner to verify!
 Default: ['jupyterhub-singleuser']
--Spawner.consecutive_failure_limit=<Int>
 Maximum number of consecutive failures to allow before shutting down
 JupyterHub.
 This helps JupyterHub recover from a certain class of problem preventing
 launch in contexts where the Hub is automatically restarted (e.g. systemd,
 docker, kubernetes).
 A limit of 0 means no limit and consecutive failures will not be tracked.
 Default: 0
--Spawner.cpu_guarantee=<Float>
 Minimum number of cpu-cores a single-user notebook server is guaranteed to
 have available.
 If this value is set to 0.5, allows use of 50% of one CPU. If this value is
 set to 2, allows use of up to 2 CPUs.
 **This is a configuration setting. Your spawner must implement support for
 the limit to work.** The default spawner, `LocalProcessSpawner`, does
 not implement this support. A custom spawner **must** add support for
 this setting for it to be enforced.
 Default: None
--Spawner.cpu_limit=<Float>
 Maximum number of cpu-cores a single-user notebook server is allowed to use.
 If this value is set to 0.5, allows use of 50% of one CPU. If this value is
 set to 2, allows use of up to 2 CPUs.
 The single-user notebook server will never be scheduled by the kernel to use
 more cpu-cores than this. There is no guarantee that it can access this many
 cpu-cores.
 **This is a configuration setting. Your spawner must implement support for
 the limit to work.** The default spawner, `LocalProcessSpawner`, does
 not implement this support. A custom spawner **must** add support for
 this setting for it to be enforced.
 Default: None
--Spawner.debug=<Bool>
 Enable debug-logging of the single-user server
 Default: False
--Spawner.default_url=<Unicode>
 The URL the single-user server should start in.
 `{username}` will be expanded to the user's username
 Example uses:
 - You can set `notebook_dir` to `/` and `default_url` to `/tree/home/{username}` to allow people to
 navigate the whole filesystem from their notebook server, but still start in their home directory.
 - Start with `/notebooks` instead of `/tree` if `default_url` points to a notebook instead of a directory.
 - You can set this to `/lab` to have JupyterLab start by default, rather than Jupyter Notebook.
 Default: ''
--Spawner.disable_user_config=<Bool>
 Disable per-user configuration of single-user servers.
 When starting the user's single-user server, any config file found in the
 user's $HOME directory will be ignored.
 Note: a user could circumvent this if the user modifies their Python
 environment, such as when they have their own conda environments /
 virtualenvs / containers.
 Default: False
--Spawner.env_keep=<list-item-1>...
 List of environment variables for the single-user server to inherit from the
 JupyterHub process.
 This list is used to ensure that sensitive information in the JupyterHub
 process's environment (such as `CONFIGPROXY_AUTH_TOKEN`) is not passed to
 the single-user server's process.
 Default: ['PATH', 'PYTHONPATH', 'CONDA_ROOT', 'CONDA_DEFAULT_ENV', 'VI...
--Spawner.environment=<key-1>=<value-1>...
 Extra environment variables to set for the single-user server's process.
 Environment variables that end up in the single-user server's process come from 3 sources:
 - This `environment` configurable
 - The JupyterHub process' environment variables that are listed in `env_keep`
 - Variables to establish contact between the single-user notebook and the hub (such as JUPYTERHUB_API_TOKEN)
 The `environment` configurable should be set by JupyterHub administrators to
 add installation specific environment variables. It is a dict where the key
 is the name of the environment variable, and the value can be a string or a
 callable. If it is a callable, it will be called with one parameter (the
 spawner instance), and should return a string fairly quickly (no blocking
 operations please!).
 Note that the spawner class' interface is not guaranteed to be exactly same
 across upgrades, so if you are using the callable take care to verify it
 continues to work after upgrades!
 .. versionchanged:: 1.2
 environment from this configuration has highest priority,
 allowing override of 'default' env variables,
 such as JUPYTERHUB_API_URL.
 Default: {}
--Spawner.http_timeout=<Int>
 Timeout (in seconds) before giving up on a spawned HTTP server
 Once a server has successfully been spawned, this is the amount of time we
 wait before assuming that the server is unable to accept connections.
 Default: 30
--Spawner.hub_connect_url=<Unicode>
 The URL the single-user server should connect to the Hub.
 If the Hub URL set in your JupyterHub config is not reachable from spawned
 notebooks, you can set differnt URL by this config.
 Is None if you don't need to change the URL.
 Default: None
--Spawner.ip=<Unicode>
 The IP address (or hostname) the single-user server should listen on.
 Usually either '127.0.0.1' (default) or '0.0.0.0'.
 The JupyterHub proxy implementation should be able to send packets to this
 interface.
 Subclasses which launch remotely or in containers should override the
 default to '0.0.0.0'.
 .. versionchanged:: 2.0
 Default changed to '127.0.0.1', from ''.
 In most cases, this does not result in a change in behavior,
 as '' was interpreted as 'unspecified',
 which used the subprocesses' own default, itself usually '127.0.0.1'.
 Default: '127.0.0.1'
--Spawner.mem_guarantee=<ByteSpecification>
 Minimum number of bytes a single-user notebook server is guaranteed to have
 available.
 Allows the following suffixes:
 - K -> Kilobytes
 - M -> Megabytes
 - G -> Gigabytes
 - T -> Terabytes
 **This is a configuration setting. Your spawner must implement support for
 the limit to work.** The default spawner, `LocalProcessSpawner`, does
 not implement this support. A custom spawner **must** add support for
 this setting for it to be enforced.
 Default: None
--Spawner.mem_limit=<ByteSpecification>
 Maximum number of bytes a single-user notebook server is allowed to use.
 Allows the following suffixes:
 - K -> Kilobytes
 - M -> Megabytes
 - G -> Gigabytes
 - T -> Terabytes
 If the single user server tries to allocate more memory than this, it will
 fail. There is no guarantee that the single-user notebook server will be
 able to allocate this much memory - only that it can not allocate more than
 this.
 **This is a configuration setting. Your spawner must implement support for
 the limit to work.** The default spawner, `LocalProcessSpawner`, does
 not implement this support. A custom spawner **must** add support for
 this setting for it to be enforced.
 Default: None
--Spawner.notebook_dir=<Unicode>
 Path to the notebook directory for the single-user server.
 The user sees a file listing of this directory when the notebook interface
 is started. The current interface does not easily allow browsing beyond the
 subdirectories in this directory's tree.
 `~` will be expanded to the home directory of the user, and {username} will
 be replaced with the name of the user.
 Note that this does *not* prevent users from accessing files outside of this
 path! They can do so with many other means.
 Default: ''
--Spawner.oauth_roles=<Union>
 Allowed roles for oauth tokens.
 This sets the maximum and default roles
 assigned to oauth tokens issued by a single-user server's
 oauth client (i.e. tokens stored in browsers after authenticating with the server),
 defining what actions the server can take on behalf of logged-in users.
 Default is an empty list, meaning minimal permissions to identify users,
 no actions can be taken on their behalf.
 Default: traitlets.Undefined
--Spawner.options_form=<Union>
 An HTML form for options a user can specify on launching their server.
 The surrounding `<form>` element and the submit button are already provided.
 For example:
 .. code:: html
 Set your key:
 <input name="key" val="default_key"></input>

 Choose a letter:
 <select name="letter" multiple="true">
 <option value="A">The letter A</option>
 <option value="B">The letter B</option>
 </select>
 The data from this form submission will be passed on to your spawner in
 `self.user_options`
 Instead of a form snippet string, this could also be a callable that takes
 as one parameter the current spawner instance and returns a string. The
 callable will be called asynchronously if it returns a future, rather than a
 str. Note that the interface of the spawner class is not deemed stable
 across versions, so using this functionality might cause your JupyterHub
 upgrades to break.
 Default: traitlets.Undefined
--Spawner.options_from_form=<Callable>
 Interpret HTTP form data
 Form data will always arrive as a dict of lists of strings. Override this
 function to understand single-values, numbers, etc.
 This should coerce form data into the structure expected by
 self.user_options, which must be a dict, and should be JSON-serializeable,
 though it can contain bytes in addition to standard JSON data types.
 This method should not have any side effects. Any handling of `user_options`
 should be done in `.start()` to ensure consistent behavior across servers
 spawned via the API and form submission page.
 Instances will receive this data on self.user_options, after passing through
 this function, prior to `Spawner.start`.
 .. versionchanged:: 1.0
 user_options are persisted in the JupyterHub database to be reused
 on subsequent spawns if no options are given.
 user_options is serialized to JSON as part of this persistence
 (with additional support for bytes in case of uploaded file data),
 and any non-bytes non-jsonable values will be replaced with None
 if the user_options are re-used.
 Default: traitlets.Undefined
--Spawner.poll_interval=<Int>
 Interval (in seconds) on which to poll the spawner for single-user server's
 status.
 At every poll interval, each spawner's `.poll` method is called, which
 checks if the single-user server is still running. If it isn't running, then
 JupyterHub modifies its own state accordingly and removes appropriate routes
 from the configurable proxy.
 Default: 30
--Spawner.port=<Int>
 The port for single-user servers to listen on.
 Defaults to `0`, which uses a randomly allocated port number each time.
 If set to a non-zero value, all Spawners will use the same port, which only
 makes sense if each server is on a different address, e.g. in containers.
 New in version 0.7.
 Default: 0
--Spawner.post_stop_hook=<Any>
 An optional hook function that you can implement to do work after the
 spawner stops.
 This can be set independent of any concrete spawner implementation.
 Default: None
--Spawner.pre_spawn_hook=<Any>
 An optional hook function that you can implement to do some bootstrapping
 work before the spawner starts. For example, create a directory for your
 user or load initial content.
 This can be set independent of any concrete spawner implementation.
 This maybe a coroutine.
 Example::
 from subprocess import check_call
 def my_hook(spawner):
 username = spawner.user.name
 check_call(['./examples/bootstrap-script/bootstrap.sh', username])
 c.Spawner.pre_spawn_hook = my_hook
 Default: None
--Spawner.ssl_alt_names=<list-item-1>...
 List of SSL alt names
 May be set in config if all spawners should have the same value(s),
 or set at runtime by Spawner that know their names.
 Default: []
--Spawner.ssl_alt_names_include_local=<Bool>
 Whether to include DNS:localhost, IP:127.0.0.1 in alt names
 Default: True
--Spawner.start_timeout=<Int>
 Timeout (in seconds) before giving up on starting of single-user server.
 This is the timeout for start to return, not the timeout for the server to
 respond. Callers of spawner.start will assume that startup has failed if it
 takes longer than this. start should return when the server process is
 started and its location is known.
 Default: 60

Authenticator(LoggingConfigurable) options
--
--Authenticator.admin_users=<set-item-1>...
 Set of users that will have admin rights on this JupyterHub.
 Note: As of JupyterHub 2.0, full admin rights should not be required, and
 more precise permissions can be managed via roles.
 Admin users have extra privileges:
 - Use the admin panel to see list of users logged in
 - Add / remove users in some authenticators
 - Restart / halt the hub
 - Start / stop users' single-user servers
 - Can access each individual users' single-user server (if configured)
 Admin access should be treated the same way root access is.
 Defaults to an empty set, in which case no user has admin access.
 Default: set()
--Authenticator.allowed_users=<set-item-1>...
 Set of usernames that are allowed to log in.
 Use this with supported authenticators to restrict which users can log in.
 This is an additional list that further restricts users, beyond whatever
 restrictions the authenticator has in place. Any user in this list is
 granted the 'user' role on hub startup.
 If empty, does not perform any additional restriction.
 .. versionchanged:: 1.2
 `Authenticator.whitelist` renamed to `allowed_users`
 Default: set()
--Authenticator.auth_refresh_age=<Int>
 The max age (in seconds) of authentication info
 before forcing a refresh of user auth info.
 Refreshing auth info allows, e.g. requesting/re-validating auth
 tokens.
 See :meth:`.refresh_user` for what happens when user auth info is refreshed
 (nothing by default).
 Default: 300
--Authenticator.auto_login=<Bool>
 Automatically begin the login process
 rather than starting with a "Login with..." link at `/hub/login`
 To work, `.login_url()` must give a URL other than the default `/hub/login`,
 such as an oauth handler or another automatic login handler,
 registered with `.get_handlers()`.
 .. versionadded:: 0.8
 Default: False
--Authenticator.auto_login_oauth2_authorize=<Bool>
 Automatically begin login process for OAuth2 authorization requests
 When another application is using JupyterHub as OAuth2 provider, it sends
 users to `/hub/api/oauth2/authorize`. If the user isn't logged in already,
 and auto_login is not set, the user will be dumped on the hub's home page,
 without any context on what to do next.
 Setting this to true will automatically redirect users to login if they
 aren't logged in *only* on the `/hub/api/oauth2/authorize` endpoint.
 .. versionadded:: 1.5
 Default: False
--Authenticator.blocked_users=<set-item-1>...
 Set of usernames that are not allowed to log in.
 Use this with supported authenticators to restrict which users can not log
 in. This is an additional block list that further restricts users, beyond
 whatever restrictions the authenticator has in place.
 If empty, does not perform any additional restriction.
 .. versionadded: 0.9
 .. versionchanged:: 1.2
 `Authenticator.blacklist` renamed to `blocked_users`
 Default: set()
--Authenticator.delete_invalid_users=<Bool>
 Delete any users from the database that do not pass validation
 When JupyterHub starts, `.add_user` will be called
 on each user in the database to verify that all users are still valid.
 If `delete_invalid_users` is True,
 any users that do not pass validation will be deleted from the database.
 Use this if users might be deleted from an external system,
 such as local user accounts.
 If False (default), invalid users remain in the Hub's database
 and a warning will be issued.
 This is the default to avoid data loss due to config changes.
 Default: False
--Authenticator.enable_auth_state=<Bool>
 Enable persisting auth_state (if available).
 auth_state will be encrypted and stored in the Hub's database.
 This can include things like authentication tokens, etc.
 to be passed to Spawners as environment variables.
 Encrypting auth_state requires the cryptography package.
 Additionally, the JUPYTERHUB_CRYPT_KEY environment variable must
 contain one (or more, separated by ;) 32B encryption keys.
 These can be either base64 or hex-encoded.
 If encryption is unavailable, auth_state cannot be persisted.
 New in JupyterHub 0.8
 Default: False
--Authenticator.post_auth_hook=<Any>
 An optional hook function that you can implement to do some bootstrapping
 work during authentication. For example, loading user account details from
 an external system.
 This function is called after the user has passed all authentication checks
 and is ready to successfully authenticate. This function must return the
 authentication dict reguardless of changes to it.
 This maybe a coroutine.
 .. versionadded: 1.0
 Example::
 import os, pwd
 def my_hook(authenticator, handler, authentication):
 user_data = pwd.getpwnam(authentication['name'])
 spawn_data = {
 'pw_data': user_data
 'gid_list': os.getgrouplist(authentication['name'], user_data.pw_gid)
 }
 if authentication['auth_state'] is None:
 authentication['auth_state'] = {}
 authentication['auth_state']['spawn_data'] = spawn_data
 return authentication
 c.Authenticator.post_auth_hook = my_hook
 Default: None
--Authenticator.refresh_pre_spawn=<Bool>
 Force refresh of auth prior to spawn.
 This forces :meth:`.refresh_user` to be called prior to launching
 a server, to ensure that auth state is up-to-date.
 This can be important when e.g. auth tokens that may have expired
 are passed to the spawner via environment variables from auth_state.
 If refresh_user cannot refresh the user auth data,
 launch will fail until the user logs in again.
 Default: False
--Authenticator.username_map=<key-1>=<value-1>...
 Dictionary mapping authenticator usernames to JupyterHub users.
 Primarily used to normalize OAuth user names to local users.
 Default: {}
--Authenticator.username_pattern=<Unicode>
 Regular expression pattern that all valid usernames must match.
 If a username does not match the pattern specified here, authentication will
 not be attempted.
 If not set, allow any username.
 Default: ''
--Authenticator.whitelist=<set-item-1>...
 Deprecated, use `Authenticator.allowed_users`
 Default: set()

CryptKeeper(SingletonConfigurable) options
--
--CryptKeeper.keys=<list-item-1>...
 Default: []
--CryptKeeper.n_threads=<Int>
 The number of threads to allocate for encryption
 Default: 2

Examples

 generate default config file:

 jupyterhub --generate-config -f /etc/jupyterhub/jupyterhub_config.py

 spawn the server on 10.0.1.2:443 with https:

 jupyterhub --ip 10.0.1.2 --port 443 --ssl-key my_ssl.key --ssl-cert my_ssl.cert

 JupyterHub and OAuth

JupyterHub and OAuth

JupyterHub uses OAuth 2 internally as a mechanism for authenticating users.
As such, JupyterHub itself always functions as an OAuth provider.
More on what that means below.

Additionally, JupyterHub is often deployed with oauthenticator [https://oauthenticator.readthedocs.io],
where an external identity provider, such as GitHub or KeyCloak, is used to authenticate users.
When this is the case, there are two nested oauth flows:
an internal oauth flow where JupyterHub is the provider,
and and external oauth flow, where JupyterHub is a client.

This means that when you are using JupyterHub, there is always at least one and often two layers of OAuth involved in a user logging in and accessing their server.

Some relevant points:

	Single-user servers never need to communicate with or be aware of the upstream provider configured in your Authenticator.
As far as they are concerned, only JupyterHub is an OAuth provider,
and how users authenticate with the Hub itself is irrelevant.

	When talking to a single-user server,
there are ~always two tokens:
a token issued to the server itself to communicate with the Hub API,
and a second per-user token in the browser to represent the completed login process and authorized permissions.
More on this later.

Key OAuth terms

Here are some key definitions to keep in mind when we are talking about OAuth.
You can also read more detail here [https://www.oauth.com/oauth2-servers/definitions/].

	provider the entity responsible for managing identity and authorization,
always a web server.
JupyterHub is always an oauth provider for JupyterHub’s components.
When OAuthenticator is used, an external service, such as GitHub or KeyCloak, is also an oauth provider.

	client An entity that requests OAuth tokens on a user’s behalf,
generally a web server of some kind.
OAuth clients are services that delegate authentication and/or authorization
to an OAuth provider.
JupyterHub services or single-user servers are OAuth clients of the JupyterHub provider.
When OAuthenticator is used, JupyterHub is itself also an OAuth client for the external oauth provider, e.g. GitHub.

	browser A user’s web browser, which makes requests and stores things like cookies

	token The secret value used to represent a user’s authorization. This is the final product of the OAuth process.

	code A short-lived temporary secret that the client exchanges
for a token at the conclusion of oauth,
in what’s generally called the “oauth callback handler.”

One oauth flow

OAuth flow is what we call the sequence of HTTP requests involved in authenticating a user and issuing a token, ultimately used for authorized access to a service or single-user server.

A single oauth flow generally goes like this:

OAuth request and redirect

	A browser makes an HTTP request to an oauth client.

	There are no credentials, so the client redirects the browser to an “authorize” page on the oauth provider with some extra information:

	the oauth client id of the client itself

	the redirect uri to be redirected back to after completion

	the scopes requested, which the user should be presented with to confirm.
This is the “X would like to be able to Y on your behalf. Allow this?” page you see on all the “Login with …” pages around the Internet.

	During this authorize step,
the browser must be authenticated with the provider.
This is often already stored in a cookie,
but if not the provider webapp must begin its own authentication process before serving the authorization page.
This may even begin another oauth flow!

	After the user tells the provider that they want to proceed with the authorization,
the provider records this authorization in a short-lived record called an oauth code.

	Finally, the oauth provider redirects the browser back to the oauth client’s “redirect uri”
(or “oauth callback uri”),
with the oauth code in a url parameter.

That’s the end of the requests made between the browser and the provider.

State after redirect

At this point:

	The browser is authenticated with the provider

	The user’s authorized permissions are recorded in an oauth code

	The provider knows that the given oauth client’s requested permissions have been granted, but the client doesn’t know this yet.

	All requests so far have been made directly by the browser.
No requests have originated at the client or provider.

OAuth Client Handles Callback Request

Now we get to finish the OAuth process.
Let’s dig into what the oauth client does when it handles
the oauth callback request with the

	The OAuth client receives the code and makes an API request to the provider to exchange the code for a real token.
This is the first direct request between the OAuth client and the provider.

	Once the token is retrieved, the client usually
makes a second API request to the provider
to retrieve information about the owner of the token (the user).
This is the step where behavior diverges for different OAuth providers.
Up to this point, all oauth providers are the same, following the oauth specification.
However, oauth does not define a standard for exchanging tokens for information about their owner or permissions (OpenID Connect [https://openid.net/connect/] does that),
so this step may be different for each OAuth provider.

	Finally, the oauth client stores its own record that the user is authorized in a cookie.
This could be the token itself, or any other appropriate representation of successful authentication.

	Last of all, now that credentials have been established,
the browser can be redirected to the original URL where it started,
to try the request again.
If the client wasn’t able to keep track of the original URL all this time
(not always easy!),
you might end up back at a default landing page instead of where you started the login process. This is frustrating!

😮‍💨 phew.

So that’s one OAuth process.

Full sequence of OAuth in JupyterHub

Let’s go through the above oauth process in JupyterHub,
with specific examples of each HTTP request and what information is contained.
For bonus points, we are using the double-oauth example of JupyterHub configured with GitHubOAuthenticator.

To disambiguate, we will call the OAuth process where JupyterHub is the provider “internal oauth,”
and the one with JupyterHub as a client “external oauth.”

Our starting point:

	a user’s single-user server is running. Let’s call them danez

	jupyterhub is running with GitHub as an oauth provider (this means two full instances of oauth),

	Danez has a fresh browser session with no cookies yet

First request:

	browser->single-user server running JupyterLab or Jupyter Classic

	GET /user/danez/notebooks/mynotebook.ipynb

	no credentials, so single-user server (as an oauth client) starts internal oauth process with JupyterHub (the provider)

	response: 302 redirect -> /hub/api/oauth2/authorize
with:

	client-id=jupyterhub-user-danez

	redirect-uri=/user/danez/oauth_callback (we’ll come back later!)

Second request, following redirect:

	browser->jupyterhub

	GET /hub/api/oauth2/authorize

	no credentials, so jupyterhub starts external oauth process with GitHub

	response: 302 redirect -> https://github.com/login/oauth/authorize
with:

	client-id=jupyterhub-client-uuid

	redirect-uri=/hub/oauth_callback (we’ll come back later!)

pause This is where JupyterHub configuration comes into play.
Recall, in this case JupyterHub is using:

c.JupyterHub.authenticator_class = 'github'

That means authenticating a request to the Hub itself starts
a second, external oauth process with GitHub as a provider.
This external oauth process is optional, though.
If you were using the default username+password PAMAuthenticator,
this redirect would have been to /hub/login instead, to present the user
with a login form.

Third request, following redirect:

	browser->GitHub

	GET https://github.com/login/oauth/authorize

Here, GitHub prompts for login and asks for confirmation of authorization
(more redirects if you aren’t logged in to GitHub yet, but ultimately back to this /authorize URL).

After successful authorization
(either by looking up a pre-existing authorization,
or recording it via form submission)
GitHub issues an oauth code and redirects to /hub/oauth_callback?code=github-code

Next request:

	browser->JupyterHub

	GET /hub/oauth_callback?code=github-code

Inside the callback handler, JupyterHub makes two API requests:

The first:

	JupyterHub->GitHub

	POST https://github.com/login/oauth/access_token

	request made with oauth code from url parameter

	response includes an access token

The second:

	JupyterHub->GitHub

	GET https://api.github.com/user

	request made with access token in the Authorization header

	response is the user model, including username, email, etc.

Now the external oauth callback request completes with:

	set cookie on /hub/ path, recording jupyterhub authentication so we don’t need to do external oauth with GitHub again for a while

	redirect -> /hub/api/oauth2/authorize

🎉 At this point, we have completed our first OAuth flow! 🎉

Now, we get our first repeated request:

	browser->jupyterhub

	GET /hub/api/oauth2/authorize

	this time with credentials,
so jupyterhub either

	serves the internal authorization confirmation page, or

	automatically accepts authorization (shortcut taken when a user is visiting their own server)

	redirect -> /user/danez/oauth_callback?code=jupyterhub-code

Here, we start the same oauth callback process as before, but at Danez’s single-user server for the internal oauth

	browser->single-user server

	GET /user/danez/oauth_callback

(in handler)

Inside the internal oauth callback handler,
Danez’s server makes two API requests to JupyterHub:

The first:

	single-user server->JupyterHub

	POST /hub/api/oauth2/token

	request made with oauth code from url parameter

	response includes an API token

The second:

	single-user server->JupyterHub

	GET /hub/api/user

	request made with token in the Authorization header

	response is the user model, including username, groups, etc.

Finally completing GET /user/danez/oauth_callback:

	response sets cookie, storing encrypted access token

	finally redirects back to the original /user/danez/notebooks/mynotebook.ipynb

Final request:

	browser -> single-user server

	GET /user/danez/notebooks/mynotebook.ipynb

	encrypted jupyterhub token in cookie

To authenticate this request, the single token stored in the encrypted cookie is passed to the Hub for verification:

	single-user server -> Hub

	GET /hub/api/user

	browser’s token in Authorization header

	response: user model with name, groups, etc.

If the user model matches who should be allowed (e.g. Danez),
then the request is allowed.
See Scopes in JupyterHub for how JupyterHub uses scopes to determine authorized access to servers and services.

the end

Token caches and expiry

Because tokens represent information from an external source,
they can become ‘stale,’
or the information they represent may no longer be accurate.
For example: a user’s GitHub account may no longer be authorized to use JupyterHub,
that should ultimately propagate to revoking access and force logging in again.

To handle this, OAuth tokens and the various places they are stored can expire,
which should have the same effect as no credentials,
and trigger the authorization process again.

In JupyterHub’s internal oauth, we have these layers of information that can go stale:

	The oauth client has a cache of Hub responses for tokens,
so it doesn’t need to make API requests to the Hub for every request it receives.
This cache has an expiry of five minutes by default,
and is governed by the configuration HubAuth.cache_max_age in the single-user server.

	The internal oauth token is stored in a cookie, which has its own expiry (default: 14 days),
governed by JupyterHub.cookie_max_age_days.

	The internal oauth token can also itself expire,
which is by default the same as the cookie expiry,
since it makes sense for the token itself and the place it is stored to expire at the same time.
This is governed by JupyterHub.cookie_max_age_days first,
or can overridden by JupyterHub.oauth_token_expires_in.

That’s all for internal auth storage,
but the information from the external authentication provider
(could be PAM or GitHub OAuth, etc.) can also expire.
Authenticator configuration governs when JupyterHub needs to ask again,
triggering the external login process anew before letting a user proceed.

	jupyterhub-hub-login cookie stores that a browser is authenticated with the Hub.
This expires according to JupyterHub.cookie_max_age_days configuration,
with a default of 14 days.
The jupyterhub-hub-login cookie is encrypted with JupyterHub.cookie_secret
configuration.

	Authenticator.refresh_user() is a method to refresh a user’s auth info.
By default, it does nothing, but it can return an updated user model if a user’s information has changed,
or force a full login process again if needed.

	Authenticator.auth_refresh_age configuration governs how often
refresh_user() will be called to check if a user must login again (default: 300 seconds).

	Authenticator.refresh_pre_spawn configuration governs whether
refresh_user() should be called prior to spawning a server,
to force fresh auth info when a server is launched (default: False).
This can be useful when Authenticators pass access tokens to spawner environments, to ensure they aren’t getting a stale token that’s about to expire.

So what happens when these things expire or get stale?

	If the HubAuth token response cache expires,
when a request is made with a token,
the Hub is asked for the latest information about the token.
This usually has no visible effect, since it is just refreshing a cache.
If it turns out that the token itself has expired or been revoked,
the request will be denied.

	If the token has expired, but is still in the cookie:
when the token response cache expires,
the next time the server asks the hub about the token,
no user will be identified and the internal oauth process begins again.

	If the token cookie expires, the next browser request will be made with no credentials,
and the internal oauth process will begin again.
This will usually have the form of a transparent redirect browsers won’t notice.
However, if this occurs on an API request in a long-lived page visit
such as a JupyterLab session, the API request may fail and require
a page refresh to get renewed credentials.

	If the JupyterHub cookie expires, the next time the browser makes a request to the Hub,
the Hub’s authorization process must begin again (e.g. login with GitHub).
Hub cookie expiry on its own does not mean that a user can no longer access their single-user server!

	If credentials from the upstream provider (e.g. GitHub) become stale or outdated,
these will not be refreshed until/unless refresh_user is called
and refresh_user() on the given Authenticator is implemented to perform such a check.
At this point, few Authenticators implement refresh_user to support this feature.
If your Authenticator does not or cannot implement refresh_user,
the only way to force a check is to reset the JupyterHub.cookie_secret encryption key,
which invalidates the jupyterhub-hub-login cookie for all users.

Logging out

Logging out of JupyterHub means clearing and revoking many of these credentials:

	The jupyterhub-hub-login cookie is revoked, meaning the next request to the Hub itself will require a new login.

	The token stored in the jupyterhub-user-username cookie for the single-user server
will be revoked, based on its associaton with jupyterhub-session-id, but the cookie itself cannot be cleared at this point

	The shared jupyterhub-session-id is cleared, which ensures that the HubAuth token response cache will not be used,
and the next request with the expired token will ask the Hub, which will inform the single-user server that the token has expired

Extra bits

A tale of two tokens

TODO: discuss API token issued to server at startup ($JUPYTERHUB_API_TOKEN)
and oauth-issued token in the cookie,
and some details of how JupyterLab currently deals with that.
They are different, and JupyterLab should be making requests using the token from the cookie,
not the token from the server,
but that is not currently the case.

Redirect loops

In general, an authenticated web endpoint has this behavior,
based on the authentication/authorization state of the browser:

	If authorized, allow the request to happen

	If authenticated (I know who you are) but not authorized (you are not allowed), fail with a 403 permission denied error

	If not authenticated, start a redirect process to establish authorization,
which should end in a redirect back to the original URL to try again.
This is why problems in authentication result in redirect loops!
If the second request fails to detect the authentication that should have been established during the redirect,
it will start the authentication redirect process over again,
and keep redirecting in a loop until the browser balks.

 Administrator’s Guide

Administrator’s Guide

This guide covers best-practices, tips, common questions and operations, as
well as other information relevant to running your own JupyterHub over time.

	Troubleshooting
	Behavior

	Errors

	How do I…?

	Troubleshooting commands

	Upgrading JupyterHub
	Read the Changelog

	Notify your users

	Backup database & config

	Shutdown JupyterHub

	Upgrade JupyterHub packages

	Upgrade JupyterHub database

	Start JupyterHub

	Changelog
	Unreleased

	2.0.0

	1.5

	1.4

	1.3

	1.2

	1.1

	1.0

	0.9

	0.8

	0.7

	0.6

	0.5 - 2016-03-07

	0.4

	0.3 - 2015-11-04

	0.2 - 2015-07-12

	0.1 - 2015-03-07

 Troubleshooting

Troubleshooting

When troubleshooting, you may see unexpected behaviors or receive an error
message. This section provide links for identifying the cause of the
problem and how to resolve it.

Behavior

	JupyterHub proxy fails to start

	sudospawner fails to run

	What is the default behavior when none of the lists (admin, allowed,
allowed groups) are set?

	JupyterHub Docker container not accessible at localhost

Errors

	500 error after spawning my single-user server

How do I…?

	Use a chained SSL certificate

	Install JupyterHub without a network connection

	I want access to the whole filesystem, but still default users to their home directory

	How do I increase the number of pySpark executors on YARN?

	How do I use JupyterLab’s prerelease version with JupyterHub?

	How do I set up JupyterHub for a workshop (when users are not known ahead of time)?

	How do I set up rotating daily logs?

	Toree integration with HDFS rack awareness script

	Where do I find Docker images and Dockerfiles related to JupyterHub?

Troubleshooting commands

Behavior

JupyterHub proxy fails to start

If you have tried to start the JupyterHub proxy and it fails to start:

	check if the JupyterHub IP configuration setting is
c.JupyterHub.ip = '*'; if it is, try c.JupyterHub.ip = ''

	Try starting with jupyterhub --ip=0.0.0.0

Note: If this occurs on Ubuntu/Debian, check that the you are using a
recent version of node. Some versions of Ubuntu/Debian come with a version
of node that is very old, and it is necessary to update node.

sudospawner fails to run

If the sudospawner script is not found in the path, sudospawner will not run.
To avoid this, specify sudospawner’s absolute path. For example, start
jupyterhub with:

jupyterhub --SudoSpawner.sudospawner_path='/absolute/path/to/sudospawner'

or add:

c.SudoSpawner.sudospawner_path = '/absolute/path/to/sudospawner'

to the config file, jupyterhub_config.py.

What is the default behavior when none of the lists (admin, allowed, allowed groups) are set?

When nothing is given for these lists, there will be no admins, and all users
who can authenticate on the system (i.e. all the unix users on the server with
a password) will be allowed to start a server. The allowed username set lets you limit
this to a particular set of users, and admin_users lets you specify who
among them may use the admin interface (not necessary, unless you need to do
things like inspect other users’ servers, or modify the user list at runtime).

JupyterHub Docker container not accessible at localhost

Even though the command to start your Docker container exposes port 8000
(docker run -p 8000:8000 -d --name jupyterhub jupyterhub/jupyterhub jupyterhub),
it is possible that the IP address itself is not accessible/visible. As a result
when you try http://localhost:8000 in your browser, you are unable to connect
even though the container is running properly. One workaround is to explicitly
tell Jupyterhub to start at 0.0.0.0 which is visible to everyone. Try this
command:
docker run -p 8000:8000 -d --name jupyterhub jupyterhub/jupyterhub jupyterhub --ip 0.0.0.0 --port 8000

How can I kill ports from JupyterHub managed services that have been orphaned?

I started JupyterHub + nbgrader on the same host without containers. When I try to restart JupyterHub + nbgrader with this configuration, errors appear that the service accounts cannot start because the ports are being used.

How can I kill the processes that are using these ports?

Run the following command:

sudo kill -9 $(sudo lsof -t -i:<service_port>)

Where <service_port> is the port used by the nbgrader course service. This configuration is specified in jupyterhub_config.py.

Why am I getting a Spawn failed error message?

After successfully logging in to JupyterHub with a compatible authenticators, I get a ‘Spawn failed’ error message in the browser. The JupyterHub logs have jupyterhub KeyError: "getpwnam(): name not found: <my_user_name>.

This issue occurs when the authenticator requires a local system user to exist. In these cases, you need to use a spawner
that does not require an existing system user account, such as DockerSpawner or KubeSpawner.

How can I run JupyterHub with sudo but use my current env vars and virtualenv location?

When launching JupyterHub with sudo jupyterhub I get import errors and my environment variables don’t work.

When launching services with sudo ... the shell won’t have the same environment variables or PATHs in place. The most direct way to solve this issue is to use the full path to your python environment and add environment variables. For example:

sudo MY_ENV=abc123 \
 /home/foo/venv/bin/python3 \
 /srv/jupyterhub/jupyterhub

How can I view the logs for JupyterHub or the user’s Notebook servers when using the DockerSpawner?

Use docker logs <container> where <container> is the container name defined within docker-compose.yml. For example, to view the logs of the JupyterHub container use:

docker logs hub

By default, the user’s notebook server is named jupyter-<username> where username is the user’s username within JupyterHub’s db. So if you wanted to see the logs for user foo you would use:

docker logs jupyter-foo

You can also tail logs to view them in real time using the -f option:

docker logs -f hub

Errors

500 error after spawning my single-user server

You receive a 500 error when accessing the URL /user/<your_name>/....
This is often seen when your single-user server cannot verify your user cookie
with the Hub.

There are two likely reasons for this:

	The single-user server cannot connect to the Hub’s API (networking
configuration problems)

	The single-user server cannot authenticate its requests (invalid token)

Symptoms

The main symptom is a failure to load any page served by the single-user
server, met with a 500 error. This is typically the first page at /user/<your_name>
after logging in or clicking “Start my server”. When a single-user notebook server
receives a request, the notebook server makes an API request to the Hub to
check if the cookie corresponds to the right user. This request is logged.

If everything is working, the response logged will be similar to this:

200 GET /hub/api/authorizations/cookie/jupyterhub-token-name/[secret] (@10.0.1.4) 6.10ms

You should see a similar 200 message, as above, in the Hub log when you first
visit your single-user notebook server. If you don’t see this message in the log, it
may mean that your single-user notebook server isn’t connecting to your Hub.

If you see 403 (forbidden) like this, it’s likely a token problem:

403 GET /hub/api/authorizations/cookie/jupyterhub-token-name/[secret] (@10.0.1.4) 4.14ms

Check the logs of the single-user notebook server, which may have more detailed
information on the cause.

Causes and resolutions

No authorization request

If you make an API request and it is not received by the server, you likely
have a network configuration issue. Often, this happens when the Hub is only
listening on 127.0.0.1 (default) and the single-user servers are not on the
same ‘machine’ (can be physically remote, or in a docker container or VM). The
fix for this case is to make sure that c.JupyterHub.hub_ip is an address
that all single-user servers can connect to, e.g.:

c.JupyterHub.hub_ip = '10.0.0.1'

403 GET /hub/api/authorizations/cookie

If you receive a 403 error, the API token for the single-user server is likely
invalid. Commonly, the 403 error is caused by resetting the JupyterHub
database (either removing jupyterhub.sqlite or some other action) while
leaving single-user servers running. This happens most frequently when using
DockerSpawner, because Docker’s default behavior is to stop/start containers
which resets the JupyterHub database, rather than destroying and recreating
the container every time. This means that the same API token is used by the
server for its whole life, until the container is rebuilt.

The fix for this Docker case is to remove any Docker containers seeing this
issue (typically all containers created before a certain point in time):

docker rm -f jupyter-name

After this, when you start your server via JupyterHub, it will build a
new container. If this was the underlying cause of the issue, you should see
your server again.

Proxy settings (403 GET)

When your whole JupyterHub sits behind a organization proxy (not a reverse proxy like NGINX as part of your setup and not the configurable-http-proxy) the environment variables HTTP_PROXY, HTTPS_PROXY, http_proxy and https_proxy might be set. This confuses the jupyterhub-singleuser servers: When connecting to the Hub for authorization they connect via the proxy instead of directly connecting to the Hub on localhost. The proxy might deny the request (403 GET). This results in the singleuser server thinking it has a wrong auth token. To circumvent this you should add <hub_url>,<hub_ip>,localhost,127.0.0.1 to the environment variables NO_PROXY and no_proxy.

Launching Jupyter Notebooks to run as an externally managed JupyterHub service with the jupyterhub-singleuser command returns a JUPYTERHUB_API_TOKEN error

JupyterHub services [https://jupyterhub.readthedocs.io/en/stable/reference/services.html] allow processes to interact with JupyterHub’s REST API. Example use-cases include:

	Secure Testing: provide a canonical Jupyter Notebook for testing production data to reduce the number of entry points into production systems.

	Grading Assignments: provide access to shared Jupyter Notebooks that may be used for management tasks such grading assignments.

	Private Dashboards: share dashboards with certain group members.

If possible, try to run the Jupyter Notebook as an externally managed service with one of the provided jupyter/docker-stacks [https://github.com/jupyter/docker-stacks].

Standard JupyterHub installations include a jupyterhub-singleuser [https://github.com/jupyterhub/jupyterhub/blob/9fdab027daa32c9017845572ad9d5ba1722dbc53/setup.py#L116] command which is built from the jupyterhub.singleuser:main method. The jupyterhub-singleuser command is the default command when JupyterHub launches single-user Jupyter Notebooks. One of the goals of this command is to make sure the version of JupyterHub installed within the Jupyter Notebook coincides with the version of the JupyterHub server itself.

If you launch a Jupyter Notebook with the jupyterhub-singleuser command directly from the command line the Jupyter Notebook won’t have access to the JUPYTERHUB_API_TOKEN and will return:

 JUPYTERHUB_API_TOKEN env is required to run jupyterhub-singleuser.
 Did you launch it manually?

If you plan on testing jupyterhub-singleuser independently from JupyterHub, then you can set the api token environment variable. For example, if were to run the single-user Jupyter Notebook on the host, then:

export JUPYTERHUB_API_TOKEN=my_secret_token
jupyterhub-singleuser

With a docker container, pass in the environment variable with the run command:

docker run -d \
 -p 8888:8888 \
 -e JUPYTERHUB_API_TOKEN=my_secret_token \
 jupyter/datascience-notebook:latest

This example [https://github.com/jupyterhub/jupyterhub/tree/HEAD/examples/service-notebook/external] demonstrates how to combine the use of the jupyterhub-singleuser environment variables when launching a Notebook as an externally managed service.

How do I…?

Use a chained SSL certificate

Some certificate providers, i.e. Entrust, may provide you with a chained
certificate that contains multiple files. If you are using a chained
certificate you will need to concatenate the individual files by appending the
chain cert and root cert to your host cert:

cat your_host.crt chain.crt root.crt > your_host-chained.crt

You would then set in your jupyterhub_config.py file the ssl_key and
ssl_cert as follows:

c.JupyterHub.ssl_cert = your_host-chained.crt
c.JupyterHub.ssl_key = your_host.key

Example

Your certificate provider gives you the following files: example_host.crt,
Entrust_L1Kroot.txt and Entrust_Root.txt.

Concatenate the files appending the chain cert and root cert to your host cert:

cat example_host.crt Entrust_L1Kroot.txt Entrust_Root.txt > example_host-chained.crt

You would then use the example_host-chained.crt as the value for
JupyterHub’s ssl_cert. You may pass this value as a command line option
when starting JupyterHub or more conveniently set the ssl_cert variable in
JupyterHub’s configuration file, jupyterhub_config.py. In jupyterhub_config.py,
set:

c.JupyterHub.ssl_cert = /path/to/example_host-chained.crt
c.JupyterHub.ssl_key = /path/to/example_host.key

where ssl_cert is example-chained.crt and ssl_key to your private key.

Then restart JupyterHub.

See also JupyterHub SSL encryption.

Install JupyterHub without a network connection

Both conda and pip can be used without a network connection. You can make your
own repository (directory) of conda packages and/or wheels, and then install
from there instead of the internet.

For instance, you can install JupyterHub with pip and configurable-http-proxy
with npmbox:

python3 -m pip wheel jupyterhub
npmbox configurable-http-proxy

I want access to the whole filesystem, but still default users to their home directory

Setting the following in jupyterhub_config.py will configure access to
the entire filesystem and set the default to the user’s home directory.

c.Spawner.notebook_dir = '/'
c.Spawner.default_url = '/home/%U' # %U will be replaced with the username

How do I increase the number of pySpark executors on YARN?

From the command line, pySpark executors can be configured using a command
similar to this one:

pyspark --total-executor-cores 2 --executor-memory 1G

Cloudera documentation for configuring spark on YARN applications [https://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#spark_on_yarn_config_apps]
provides additional information. The pySpark configuration documentation [https://spark.apache.org/docs/0.9.0/configuration.html]
is also helpful for programmatic configuration examples.

How do I use JupyterLab’s prerelease version with JupyterHub?

While JupyterLab is still under active development, we have had users
ask about how to try out JupyterLab with JupyterHub.

You need to install and enable the JupyterLab extension system-wide,
then you can change the default URL to /lab.

For instance:

python3 -m pip install jupyterlab
jupyter serverextension enable --py jupyterlab --sys-prefix

The important thing is that jupyterlab is installed and enabled in the
single-user notebook server environment. For system users, this means
system-wide, as indicated above. For Docker containers, it means inside
the single-user docker image, etc.

In jupyterhub_config.py, configure the Spawner to tell the single-user
notebook servers to default to JupyterLab:

c.Spawner.default_url = '/lab'

How do I set up JupyterHub for a workshop (when users are not known ahead of time)?

	Set up JupyterHub using OAuthenticator for GitHub authentication

	Configure admin list to have workshop leaders be listed with administrator privileges.

Users will need a GitHub account to login and be authenticated by the Hub.

How do I set up rotating daily logs?

You can do this with logrotate [https://linux.die.net/man/8/logrotate],
or pipe to logger to use syslog instead of directly to a file.

For example, with this logrotate config file:

/var/log/jupyterhub.log {
 copytruncate
 daily
}

and run this daily by putting a script in /etc/cron.daily/:

logrotate /path/to/above-config

Or use syslog:

jupyterhub | logger -t jupyterhub

Troubleshooting commands

The following commands provide additional detail about installed packages,
versions, and system information that may be helpful when troubleshooting
a JupyterHub deployment. The commands are:

	System and deployment information

jupyter troubleshooting

	Kernel information

jupyter kernelspec list

	Debug logs when running JupyterHub

jupyterhub --debug

Toree integration with HDFS rack awareness script

The Apache Toree kernel will an issue, when running with JupyterHub, if the standard HDFS
rack awareness script is used. This will materialize in the logs as a repeated WARN:

16/11/29 16:24:20 WARN ScriptBasedMapping: Exception running /etc/hadoop/conf/topology_script.py some.ip.address
ExitCodeException exitCode=1: File "/etc/hadoop/conf/topology_script.py", line 63
 print rack
 ^
SyntaxError: Missing parentheses in call to 'print'

 at `org.apache.hadoop.util.Shell.runCommand(Shell.java:576)`

In order to resolve this issue, there are two potential options.

	Update HDFS core-site.xml, so the parameter “net.topology.script.file.name” points to a custom
script (e.g. /etc/hadoop/conf/custom_topology_script.py). Copy the original script and change the first line point
to a python two installation (e.g. /usr/bin/python).

	In spark-env.sh add a Python 2 installation to your path (e.g. export PATH=/opt/anaconda2/bin:$PATH).

Where do I find Docker images and Dockerfiles related to JupyterHub?

Docker images can be found at the JupyterHub organization on DockerHub [https://hub.docker.com/u/jupyterhub/].
The Docker image jupyterhub/singleuser [https://hub.docker.com/r/jupyterhub/singleuser/]
provides an example single user notebook server for use with DockerSpawner.

Additional single user notebook server images can be found at the Jupyter
organization on DockerHub [https://hub.docker.com/r/jupyter/] and information
about each image at the jupyter/docker-stacks repo [https://github.com/jupyter/docker-stacks].

 Upgrading JupyterHub

Upgrading JupyterHub

JupyterHub offers easy upgrade pathways between minor versions. This
document describes how to do these upgrades.

If you are using a JupyterHub distribution, you
should consult the distribution’s documentation on how to upgrade. This
document is if you have set up your own JupyterHub without using a
distribution.

It is long because is pretty detailed! Most likely, upgrading
JupyterHub is painless, quick and with minimal user interruption.

Read the Changelog

The changelog contains information on what has
changed with the new JupyterHub release, and any deprecation warnings.
Read these notes to familiarize yourself with the coming changes. There
might be new releases of authenticators & spawners you are using, so
read the changelogs for those too!

Notify your users

If you are using the default configuration where configurable-http-proxy
is managed by JupyterHub, your users will see service disruption during
the upgrade process. You should notify them, and pick a time to do the
upgrade where they will be least disrupted.

If you are using a different proxy, or running configurable-http-proxy
independent of JupyterHub, your users will be able to continue using notebook
servers they had already launched, but will not be able to launch new servers
nor sign in.

Backup database & config

Before doing an upgrade, it is critical to back up:

	Your JupyterHub database (sqlite by default, or MySQL / Postgres
if you used those). If you are using sqlite (the default), you
should backup the jupyterhub.sqlite file.

	Your jupyterhub_config.py file.

	Your user’s home directories. This is unlikely to be affected directly by
a JupyterHub upgrade, but we recommend a backup since user data is very
critical.

Shutdown JupyterHub

Shutdown the JupyterHub process. This would vary depending on how you
have set up JupyterHub to run. Most likely, it is using a process
supervisor of some sort (systemd or supervisord or even docker).
Use the supervisor specific command to stop the JupyterHub process.

Upgrade JupyterHub packages

There are two environments where the jupyterhub package is installed:

	The hub environment, which is where the JupyterHub server process
runs. This is started with the jupyterhub command, and is what
people generally think of as JupyterHub.

	The notebook user environments. This is where the user notebook
servers are launched from, and is probably custom to your own
installation. This could be just one environment (different from the
hub environment) that is shared by all users, one environment
per user, or same environment as the hub environment. The hub
launched the jupyterhub-singleuser command in this environment,
which in turn starts the notebook server.

You need to make sure the version of the jupyterhub package matches
in both these environments. If you installed jupyterhub with pip,
you can upgrade it with:

python3 -m pip install --upgrade jupyterhub==<version>

Where <version> is the version of JupyterHub you are upgrading to.

If you used conda to install jupyterhub, you should upgrade it
with:

conda install -c conda-forge jupyterhub==<version>

Where <version> is the version of JupyterHub you are upgrading to.

You should also check for new releases of the authenticator & spawner you
are using. You might wish to upgrade those packages too along with JupyterHub,
or upgrade them separately.

Upgrade JupyterHub database

Once new packages are installed, you need to upgrade the JupyterHub
database. From the hub environment, in the same directory as your
jupyterhub_config.py file, you should run:

jupyterhub upgrade-db

This should find the location of your database, and run necessary upgrades
for it.

SQLite database disadvantages

SQLite has some disadvantages when it comes to upgrading JupyterHub. These
are:

	upgrade-db may not work, and you may need delete your database
and start with a fresh one.

	downgrade-db will not work if you want to rollback to an
earlier version, so backup the jupyterhub.sqlite file before
upgrading

What happens if I delete my database?

Losing the Hub database is often not a big deal. Information that
resides only in the Hub database includes:

	active login tokens (user cookies, service tokens)

	users added via JupyterHub UI, instead of config files

	info about running servers

If the following conditions are true, you should be fine clearing the
Hub database and starting over:

	users specified in config file, or login using an external
authentication provider (Google, GitHub, LDAP, etc)

	user servers are stopped during upgrade

	don’t mind causing users to login again after upgrade

Start JupyterHub

Once the database upgrade is completed, start the jupyterhub
process again.

	Log-in and start the server to make sure things work as
expected.

	Check the logs for any errors or deprecation warnings. You
might have to update your jupyterhub_config.py file to
deal with any deprecated options.

Congratulations, your JupyterHub has been upgraded!

 Changelog

Changelog

For detailed changes from the prior release, click on the version number, and
its link will bring up a GitHub listing of changes. Use git log on the
command line for details.

Unreleased [https://github.com/jupyterhub/jupyterhub/compare/2.0.0...HEAD]

2.0.0 [https://github.com/jupyterhub/jupyterhub/compare/1.5.0...2.0.0]

JupyterHub 2.0 is a big release!

The most significant change is the addition of roles and scopes
to the JupyterHub permissions model,
allowing more fine-grained access control.
Read more about it in the docs.

In particular, the ‘admin’ level of permissions should not be needed anymore,
and you can now grant users and services only the permissions they need, not more.
We encourage you to review permissions, especially any service or user with admin: true
and consider assigning only the necessary roles and scopes.

JupyterHub 2.0 requires an update to the database schema,
so make sure to read the upgrade documentation and backup your database
before upgrading.

stop all servers before upgrading

Upgrading JupyterHub to 2.0 revokes all tokens issued before the upgrade,
which means that single-user servers started before the upgrade
will become inaccessible after the upgrade until they have been stopped and started again.
To avoid this, it is best to shutdown all servers prior to the upgrade.

Other major changes that may require updates to your deployment,
depending on what features you use:

	List endpoints now support pagination, and have a max page size,
which means API consumers must be updated to make paginated requests
if you have a lot of users and/or groups.

	Spawners have stopped specifying any command-line options to spawners by default.
Previously, --ip and --port could be specified on the command-line.
From 2.0 forward, JupyterHub will only communicate options to Spawners via environment variables,
and the command to be launched is configured exclusively via Spawner.cmd and Spawner.args.

Other new features:

	new Admin page, written in React.
With RBAC, it should now be fully possible to implement a custom admin panel
as a service via the REST API.

	JupyterLab is the default UI for single-user servers,
if available in the user environment.
See more info
in the docs about switching back to the classic notebook,
if you are not ready to switch to JupyterLab.

	NullAuthenticator is now bundled with JupyterHub,
so you no longer need to install the nullauthenticator package to disable login,
you can set c.JupyterHub.authenticator_class = 'null'.

	Support jupyterhub --show-config option to see your current jupyterhub configuration.

	Add expiration date dropdown to Token page

and major bug fixes:

	Improve database rollback recovery on broken connections

and other changes:

	Requests to a not-running server (e.g. visiting /user/someuser/)
will return an HTTP 424 error instead of 503,
making it easier to monitor for real deployment problems.
JupyterLab in the user environment should be at least version 3.1.16
to recognize this error code as a stopped server.
You can temporarily opt-in to the older behavior (e.g. if older JupyterLab is required)
by setting c.JupyterHub.use_legacy_stopped_server_status_code = True.

Plus lots of little fixes along the way.

2.0.0 - 2021-12-01

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.5.0...2.0.0])

New features added

	Add NullAuthenticator to jupyterhub #3619 [https://github.com/jupyterhub/jupyterhub/pull/3619] (@manics [https://github.com/manics])

	2.0: jupyterlab by default #3615 [https://github.com/jupyterhub/jupyterhub/pull/3615] (@minrk [https://github.com/minrk])

	support inherited --show-config flags from base Application #3559 [https://github.com/jupyterhub/jupyterhub/pull/3559] (@minrk [https://github.com/minrk])

	Add expiration date dropdown to Token page #3552 [https://github.com/jupyterhub/jupyterhub/pull/3552] (@dolfinus [https://github.com/dolfinus])

	add opt-in model for paginated list results #3535 [https://github.com/jupyterhub/jupyterhub/pull/3535] (@minrk [https://github.com/minrk])

	Support auto login when used as a OAuth2 provider #3488 [https://github.com/jupyterhub/jupyterhub/pull/3488] (@yuvipanda [https://github.com/yuvipanda])

	Roles and Scopes (RBAC) #3438 [https://github.com/jupyterhub/jupyterhub/pull/3438] (@minrk [https://github.com/minrk])

	Make JupyterHub Admin page into a React app #3398 [https://github.com/jupyterhub/jupyterhub/pull/3398] (@naatebarber [https://github.com/naatebarber])

	Stop specifying --ip and --port on the command-line #3381 [https://github.com/jupyterhub/jupyterhub/pull/3381] (@minrk [https://github.com/minrk])

Enhancements made

	Add Session id to token/identify models #3685 [https://github.com/jupyterhub/jupyterhub/pull/3685] (@minrk [https://github.com/minrk])

	Log single-user app versions at startup #3681 [https://github.com/jupyterhub/jupyterhub/pull/3681] (@minrk [https://github.com/minrk])

	create groups declared in roles #3664 [https://github.com/jupyterhub/jupyterhub/pull/3664] (@minrk [https://github.com/minrk])

	Fail suspected API requests with 424, not 503 #3636 [https://github.com/jupyterhub/jupyterhub/pull/3636] (@yuvipanda [https://github.com/yuvipanda])

	add delete scopes for users, groups, servers #3616 [https://github.com/jupyterhub/jupyterhub/pull/3616] (@minrk [https://github.com/minrk])

	Reduce logging verbosity of ‘checking routes’ #3604 [https://github.com/jupyterhub/jupyterhub/pull/3604] (@yuvipanda [https://github.com/yuvipanda])

	Remove a couple every-request debug statements #3582 [https://github.com/jupyterhub/jupyterhub/pull/3582] (@minrk [https://github.com/minrk])

	Validate Content-Type Header for api POST requests #3575 [https://github.com/jupyterhub/jupyterhub/pull/3575] (@VaishnaviHire [https://github.com/VaishnaviHire])

	Improved Grammar for the Documentation #3572 [https://github.com/jupyterhub/jupyterhub/pull/3572] (@eruditehassan [https://github.com/eruditehassan])

Bugs fixed

	Hub: only accept tokens in API requests #3686 [https://github.com/jupyterhub/jupyterhub/pull/3686] (@minrk [https://github.com/minrk])

	Forward-port fixes from 1.5.0 security release #3679 [https://github.com/jupyterhub/jupyterhub/pull/3679] (@minrk [https://github.com/minrk])

	raise 404 on admin attempt to spawn nonexistent user #3653 [https://github.com/jupyterhub/jupyterhub/pull/3653] (@minrk [https://github.com/minrk])

	new user token returns 200 instead of 201 #3646 [https://github.com/jupyterhub/jupyterhub/pull/3646] (@joegasewicz [https://github.com/joegasewicz])

	Added base_url to path for jupyterhub-session-id cookie #3625 [https://github.com/jupyterhub/jupyterhub/pull/3625] (@albertmichaelj [https://github.com/albertmichaelj])

	Fix wrong name of auth_state_hook in the exception log #3569 [https://github.com/jupyterhub/jupyterhub/pull/3569] (@dolfinus [https://github.com/dolfinus])

	Stop injecting statsd parameters into the configurable HTTP proxy #3568 [https://github.com/jupyterhub/jupyterhub/pull/3568] (@paccorsi [https://github.com/paccorsi])

	explicit DB rollback for 500 errors #3566 [https://github.com/jupyterhub/jupyterhub/pull/3566] (@nsshah1288 [https://github.com/nsshah1288])

	don’t omit server model if it’s empty #3564 [https://github.com/jupyterhub/jupyterhub/pull/3564] (@minrk [https://github.com/minrk])

	ensure admin requests for missing users 404 #3563 [https://github.com/jupyterhub/jupyterhub/pull/3563] (@minrk [https://github.com/minrk])

	Avoid zombie processes in case of using LocalProcessSpawner #3543 [https://github.com/jupyterhub/jupyterhub/pull/3543] (@dolfinus [https://github.com/dolfinus])

	Fix regression where external services api_token became required #3531 [https://github.com/jupyterhub/jupyterhub/pull/3531] (@consideRatio [https://github.com/consideRatio])

	Fix allow_all check when only allow_admin is set #3526 [https://github.com/jupyterhub/jupyterhub/pull/3526] (@dolfinus [https://github.com/dolfinus])

	Bug: save_bearer_token (provider.py) passes a float value to the expires_at field (int) #3484 [https://github.com/jupyterhub/jupyterhub/pull/3484] (@weisdd [https://github.com/weisdd])

Maintenance and upkeep improvements

	build jupyterhub/singleuser along with other images #3690 [https://github.com/jupyterhub/jupyterhub/pull/3690] (@minrk [https://github.com/minrk])

	always use relative paths in data_files #3682 [https://github.com/jupyterhub/jupyterhub/pull/3682] (@minrk [https://github.com/minrk])

	Forward-port fixes from 1.5.0 security release #3679 [https://github.com/jupyterhub/jupyterhub/pull/3679] (@minrk [https://github.com/minrk])

	verify that successful login assigns default role #3674 [https://github.com/jupyterhub/jupyterhub/pull/3674] (@minrk [https://github.com/minrk])

	more calculators #3673 [https://github.com/jupyterhub/jupyterhub/pull/3673] (@minrk [https://github.com/minrk])

	use v2 of jupyterhub/action-major-minor-tag-calculator #3672 [https://github.com/jupyterhub/jupyterhub/pull/3672] (@minrk [https://github.com/minrk])

	Add support-bot #3670 [https://github.com/jupyterhub/jupyterhub/pull/3670] (@manics [https://github.com/manics])

	use tbump to tag versions #3669 [https://github.com/jupyterhub/jupyterhub/pull/3669] (@minrk [https://github.com/minrk])

	use stable autodoc-traits #3667 [https://github.com/jupyterhub/jupyterhub/pull/3667] (@minrk [https://github.com/minrk])

	Tests for our openapi spec #3665 [https://github.com/jupyterhub/jupyterhub/pull/3665] (@minrk [https://github.com/minrk])

	clarify some log messages during role assignment #3663 [https://github.com/jupyterhub/jupyterhub/pull/3663] (@minrk [https://github.com/minrk])

	Rename ‘all’ metascope to more descriptive ‘inherit’ #3661 [https://github.com/jupyterhub/jupyterhub/pull/3661] (@minrk [https://github.com/minrk])

	minor refinement of excessive scopes error message #3660 [https://github.com/jupyterhub/jupyterhub/pull/3660] (@minrk [https://github.com/minrk])

	deprecate instead of remove @admin_only auth decorator #3659 [https://github.com/jupyterhub/jupyterhub/pull/3659] (@minrk [https://github.com/minrk])

	improve timeout handling and messages #3658 [https://github.com/jupyterhub/jupyterhub/pull/3658] (@minrk [https://github.com/minrk])

	add api-only doc #3640 [https://github.com/jupyterhub/jupyterhub/pull/3640] (@minrk [https://github.com/minrk])

	Add pyupgrade –py36-plus to pre-commit config #3586 [https://github.com/jupyterhub/jupyterhub/pull/3586] (@consideRatio [https://github.com/consideRatio])

	pyupgrade: run pyupgrade –py36-plus and black on all but tests #3585 [https://github.com/jupyterhub/jupyterhub/pull/3585] (@consideRatio [https://github.com/consideRatio])

	pyupgrade: run pyupgrade –py36-plus and black on jupyterhub/tests #3584 [https://github.com/jupyterhub/jupyterhub/pull/3584] (@consideRatio [https://github.com/consideRatio])

	remove use of deprecated distutils #3562 [https://github.com/jupyterhub/jupyterhub/pull/3562] (@minrk [https://github.com/minrk])

	remove old, unused tasks.py #3561 [https://github.com/jupyterhub/jupyterhub/pull/3561] (@minrk [https://github.com/minrk])

	remove very old backward-compat for LocalProcess subclasses #3558 [https://github.com/jupyterhub/jupyterhub/pull/3558] (@minrk [https://github.com/minrk])

	Remove pre-commit from GHA #3524 [https://github.com/jupyterhub/jupyterhub/pull/3524] (@minrk [https://github.com/minrk])

	bump autodoc-traits #3510 [https://github.com/jupyterhub/jupyterhub/pull/3510] (@minrk [https://github.com/minrk])

	release docker workflow: ‘branchRegex: ^\w[\w-.]*$’ #3509 [https://github.com/jupyterhub/jupyterhub/pull/3509] (@manics [https://github.com/manics])

	exclude dependabot push events from release workflow #3505 [https://github.com/jupyterhub/jupyterhub/pull/3505] (@minrk [https://github.com/minrk])

	prepare to rename default branch to main #3462 [https://github.com/jupyterhub/jupyterhub/pull/3462] (@minrk [https://github.com/minrk])

Documentation improvements

	Service auth doc #3695 [https://github.com/jupyterhub/jupyterhub/pull/3695] (@minrk [https://github.com/minrk])

	changelog for 2.0.0rc5 #3692 [https://github.com/jupyterhub/jupyterhub/pull/3692] (@minrk [https://github.com/minrk])

	update 2.0 changelog #3687 [https://github.com/jupyterhub/jupyterhub/pull/3687] (@minrk [https://github.com/minrk])

	changelog for 2.0 release candidate #3662 [https://github.com/jupyterhub/jupyterhub/pull/3662] (@minrk [https://github.com/minrk])

	docs: fix typo in proxy config example #3657 [https://github.com/jupyterhub/jupyterhub/pull/3657] (@edgarcosta [https://github.com/edgarcosta])

	add 424 status code change to changelog #3649 [https://github.com/jupyterhub/jupyterhub/pull/3649] (@minrk [https://github.com/minrk])

	add latest changes to 2.0 changelog #3628 [https://github.com/jupyterhub/jupyterhub/pull/3628] (@minrk [https://github.com/minrk])

	server-api example typo: trim space in token file #3626 [https://github.com/jupyterhub/jupyterhub/pull/3626] (@minrk [https://github.com/minrk])

	Fix heading level in changelog #3610 [https://github.com/jupyterhub/jupyterhub/pull/3610] (@mriedem [https://github.com/mriedem])

	update quickstart requirements #3607 [https://github.com/jupyterhub/jupyterhub/pull/3607] (@minrk [https://github.com/minrk])

	2.0 changelog #3602 [https://github.com/jupyterhub/jupyterhub/pull/3602] (@minrk [https://github.com/minrk])

	Update/cleanup README #3601 [https://github.com/jupyterhub/jupyterhub/pull/3601] (@manics [https://github.com/manics])

	mailto link typo #3593 [https://github.com/jupyterhub/jupyterhub/pull/3593] (@minrk [https://github.com/minrk])

	[doc] add example specifying scopes for a default role #3581 [https://github.com/jupyterhub/jupyterhub/pull/3581] (@minrk [https://github.com/minrk])

	Add detailed doc for starting/waiting for servers via api #3565 [https://github.com/jupyterhub/jupyterhub/pull/3565] (@minrk [https://github.com/minrk])

	doc: Mention a list of known proxies available #3546 [https://github.com/jupyterhub/jupyterhub/pull/3546] (@AbdealiJK [https://github.com/AbdealiJK])

	Update changelog for 1.4.2 in main branch #3539 [https://github.com/jupyterhub/jupyterhub/pull/3539] (@consideRatio [https://github.com/consideRatio])

	Retrospectively update changelog for 1.4.1 in main branch #3537 [https://github.com/jupyterhub/jupyterhub/pull/3537] (@consideRatio [https://github.com/consideRatio])

	Fix contributor documentation’s link #3521 [https://github.com/jupyterhub/jupyterhub/pull/3521] (@icankeep [https://github.com/icankeep])

	Add research study participation notice to readme #3506 [https://github.com/jupyterhub/jupyterhub/pull/3506] (@sgibson91 [https://github.com/sgibson91])

	Fix typo #3494 [https://github.com/jupyterhub/jupyterhub/pull/3494] (@davidbrochart [https://github.com/davidbrochart])

	Add Chameleon to JupyterHub deployment gallery #3482 [https://github.com/jupyterhub/jupyterhub/pull/3482] (@diurnalist [https://github.com/diurnalist])

	Initial SECURITY.md #3445 [https://github.com/jupyterhub/jupyterhub/pull/3445] (@rpwagner [https://github.com/rpwagner])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-04-19&to=2021-11-30&type=c])

@0mar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0mar+updated%3A2021-04-19..2021-11-30&type=Issues] | @AbdealiJK [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAbdealiJK+updated%3A2021-04-19..2021-11-30&type=Issues] | @albertmichaelj [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalbertmichaelj+updated%3A2021-04-19..2021-11-30&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2021-04-19..2021-11-30&type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abollwyvl+updated%3A2021-04-19..2021-11-30&type=Issues] | @choldgraf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acholdgraf+updated%3A2021-04-19..2021-11-30&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-04-19..2021-11-30&type=Issues] | @cslocum [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acslocum+updated%3A2021-04-19..2021-11-30&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2021-04-19..2021-11-30&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidbrochart+updated%3A2021-04-19..2021-11-30&type=Issues] | @dependabot [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adependabot+updated%3A2021-04-19..2021-11-30&type=Issues] | @diurnalist [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adiurnalist+updated%3A2021-04-19..2021-11-30&type=Issues] | @dolfinus [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adolfinus+updated%3A2021-04-19..2021-11-30&type=Issues] | @echarles [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aecharles+updated%3A2021-04-19..2021-11-30&type=Issues] | @edgarcosta [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aedgarcosta+updated%3A2021-04-19..2021-11-30&type=Issues] | @ellisonbg [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aellisonbg+updated%3A2021-04-19..2021-11-30&type=Issues] | @eruditehassan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aeruditehassan+updated%3A2021-04-19..2021-11-30&type=Issues] | @icankeep [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aicankeep+updated%3A2021-04-19..2021-11-30&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2021-04-19..2021-11-30&type=Issues] | @joegasewicz [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajoegasewicz+updated%3A2021-04-19..2021-11-30&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2021-04-19..2021-11-30&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2021-04-19..2021-11-30&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-04-19..2021-11-30&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2021-04-19..2021-11-30&type=Issues] | @naatebarber [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Anaatebarber+updated%3A2021-04-19..2021-11-30&type=Issues] | @nsshah1288 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ansshah1288+updated%3A2021-04-19..2021-11-30&type=Issues] | @octavd [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aoctavd+updated%3A2021-04-19..2021-11-30&type=Issues] | @OrnithOrtion [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AOrnithOrtion+updated%3A2021-04-19..2021-11-30&type=Issues] | @paccorsi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apaccorsi+updated%3A2021-04-19..2021-11-30&type=Issues] | @panruipr [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apanruipr+updated%3A2021-04-19..2021-11-30&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apre-commit-ci+updated%3A2021-04-19..2021-11-30&type=Issues] | @rpwagner [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arpwagner+updated%3A2021-04-19..2021-11-30&type=Issues] | @sgibson91 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asgibson91+updated%3A2021-04-19..2021-11-30&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2021-04-19..2021-11-30&type=Issues] | @twalcari [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atwalcari+updated%3A2021-04-19..2021-11-30&type=Issues] | @VaishnaviHire [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AVaishnaviHire+updated%3A2021-04-19..2021-11-30&type=Issues] | @warwing [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awarwing+updated%3A2021-04-19..2021-11-30&type=Issues] | @weisdd [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aweisdd+updated%3A2021-04-19..2021-11-30&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2021-04-19..2021-11-30&type=Issues] | @willingc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awillingc+updated%3A2021-04-19..2021-11-30&type=Issues] | @ykazakov [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aykazakov+updated%3A2021-04-19..2021-11-30&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2021-04-19..2021-11-30&type=Issues]

1.5

JupyterHub 1.5 is a security release,
fixing a vulnerability ghsa-cw7p-q79f-m2v7 [https://github.com/jupyterhub/jupyterhub/security/advisories/GHSA-cw7p-q79f-m2v7] where JupyterLab users
with multiple tabs open could fail to logout completely,
leaving their browser with valid credentials until they logout again.

A few fully backward-compatible features have been backported from 2.0.

1.5.0 [https://github.com/jupyterhub/jupyterhub/compare/1.4.2...1.5.0] 2021-11-04

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.4.2...1.5.0])

New features added

	Backport #3636 to 1.4.x (opt-in support for JupyterHub.use_legacy_stopped_server_status_code) #3639 [https://github.com/jupyterhub/jupyterhub/pull/3639] (@yuvipanda [https://github.com/yuvipanda])

	Backport PR #3552 on branch 1.4.x (Add expiration date dropdown to Token page) #3580 [https://github.com/jupyterhub/jupyterhub/pull/3580] (@meeseeksmachine [https://github.com/meeseeksmachine])

	Backport PR #3488 on branch 1.4.x (Support auto login when used as a OAuth2 provider) #3579 [https://github.com/jupyterhub/jupyterhub/pull/3579] (@meeseeksmachine [https://github.com/meeseeksmachine])

Maintenance and upkeep improvements

	1.4.x: update doc requirements #3677 [https://github.com/jupyterhub/jupyterhub/pull/3677] (@minrk [https://github.com/minrk])

Documentation improvements

	use_legacy_stopped_server_status_code: use 1.* language #3676 [https://github.com/jupyterhub/jupyterhub/pull/3676] (@manics [https://github.com/manics])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-07-16&to=2021-11-03&type=c])

@choldgraf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acholdgraf+updated%3A2021-07-16..2021-11-03&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-07-16..2021-11-03&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2021-07-16..2021-11-03&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2021-07-16..2021-11-03&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-07-16..2021-11-03&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2021-07-16..2021-11-03&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2021-07-16..2021-11-03&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2021-07-16..2021-11-03&type=Issues]

1.4

JupyterHub 1.4 is a small release, with several enhancements, bug fixes,
and new configuration options.

There are no database schema changes requiring migration from 1.3 to 1.4.

1.4 is also the first version to start publishing docker images for arm64.

In particular, OAuth tokens stored in user cookies,
used for accessing single-user servers and hub-authenticated services,
have changed their expiration from one hour to the expiry of the cookie
in which they are stored (default: two weeks).
This is now also configurable via JupyterHub.oauth_token_expires_in.

The result is that it should be much less likely for auth tokens stored in cookies
to expire during the lifetime of a server.

1.4.2 [https://github.com/jupyterhub/jupyterhub/compare/1.4.1...1.4.2] 2021-06-15

1.4.2 is a small bugfix release for 1.4.

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.4.1...d9860aa98cc537cf685022f81b8f725bfef41304])

Bugs fixed

	Fix regression where external services api_token became required #3531 [https://github.com/jupyterhub/jupyterhub/pull/3531] (@consideRatio [https://github.com/consideRatio])

	Bug: save_bearer_token (provider.py) passes a float value to the expires_at field (int) #3484 [https://github.com/jupyterhub/jupyterhub/pull/3484] (@weisdd [https://github.com/weisdd])

Maintenance and upkeep improvements

	bump autodoc-traits #3510 [https://github.com/jupyterhub/jupyterhub/pull/3510] (@minrk [https://github.com/minrk])

Documentation improvements

	Fix contributor documentation’s link #3521 [https://github.com/jupyterhub/jupyterhub/pull/3521] (@icankeep [https://github.com/icankeep])

	Fix typo #3494 [https://github.com/jupyterhub/jupyterhub/pull/3494] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-05-12&to=2021-07-15&type=c])

@consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-05-12..2021-07-15&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidbrochart+updated%3A2021-05-12..2021-07-15&type=Issues] | @icankeep [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aicankeep+updated%3A2021-05-12..2021-07-15&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-05-12..2021-07-15&type=Issues] | @weisdd [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aweisdd+updated%3A2021-05-12..2021-07-15&type=Issues]

1.4.1 [https://github.com/jupyterhub/jupyterhub/compare/1.4.0...1.4.1] 2021-05-12

1.4.1 is a small bugfix release for 1.4.

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.4.0...1.4.1])

Enhancements made

Bugs fixed

	define Spawner.delete_forever on base Spawner #3454 [https://github.com/jupyterhub/jupyterhub/pull/3454] (@minrk [https://github.com/minrk])

	patch base handlers from both jupyter_server and notebook #3437 [https://github.com/jupyterhub/jupyterhub/pull/3437] (@minrk [https://github.com/minrk])

Maintenance and upkeep improvements

	ci: fix typo in environment variable #3457 [https://github.com/jupyterhub/jupyterhub/pull/3457] (@consideRatio [https://github.com/consideRatio])

	avoid re-using asyncio.Locks across event loops #3456 [https://github.com/jupyterhub/jupyterhub/pull/3456] (@minrk [https://github.com/minrk])

	ci: github workflow security, pin action to sha etc #3436 [https://github.com/jupyterhub/jupyterhub/pull/3436] (@consideRatio [https://github.com/consideRatio])

Documentation improvements

	Fix documentation #3452 [https://github.com/jupyterhub/jupyterhub/pull/3452] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-04-19&to=2021-05-12&type=c])

@0mar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0mar+updated%3A2021-04-19..2021-05-12&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2021-04-19..2021-05-12&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-04-19..2021-05-12&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2021-04-19..2021-05-12&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidbrochart+updated%3A2021-04-19..2021-05-12&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2021-04-19..2021-05-12&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2021-04-19..2021-05-12&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-04-19..2021-05-12&type=Issues] | @naatebarber [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Anaatebarber+updated%3A2021-04-19..2021-05-12&type=Issues] | @OrnithOrtion [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AOrnithOrtion+updated%3A2021-04-19..2021-05-12&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2021-04-19..2021-05-12&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2021-04-19..2021-05-12&type=Issues]

1.4.0 [https://github.com/jupyterhub/jupyterhub/compare/1.3.0...1.4.0] 2021-04-19

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.3.0...1.4.0])

New features added

	Support Proxy.extra_routes #3430 [https://github.com/jupyterhub/jupyterhub/pull/3430] (@yuvipanda [https://github.com/yuvipanda])

	login-template: Add a “login_container” block inside the div-container. #3422 [https://github.com/jupyterhub/jupyterhub/pull/3422] (@olifre [https://github.com/olifre])

	Docker arm64 builds #3421 [https://github.com/jupyterhub/jupyterhub/pull/3421] (@manics [https://github.com/manics])

	make oauth token expiry configurable #3411 [https://github.com/jupyterhub/jupyterhub/pull/3411] (@minrk [https://github.com/minrk])

	allow the hub to not be the default route #3373 [https://github.com/jupyterhub/jupyterhub/pull/3373] (@minrk [https://github.com/minrk])

	Allow customization of service menu via templates #3345 [https://github.com/jupyterhub/jupyterhub/pull/3345] (@stv0g [https://github.com/stv0g])

	Add Spawner.delete_forever #3337 [https://github.com/jupyterhub/jupyterhub/pull/3337] (@nsshah1288 [https://github.com/nsshah1288])

	Allow to set spawner-specific hub connect URL #3326 [https://github.com/jupyterhub/jupyterhub/pull/3326] (@dtaniwaki [https://github.com/dtaniwaki])

	Make Authenticator Custom HTML Flexible #3315 [https://github.com/jupyterhub/jupyterhub/pull/3315] (@dtaniwaki [https://github.com/dtaniwaki])

Enhancements made

	Log the exception raised in Spawner.post_stop_hook instead of raising it #3418 [https://github.com/jupyterhub/jupyterhub/pull/3418] (@jiajunjie [https://github.com/jiajunjie])

	Don’t delete all oauth clients on startup #3407 [https://github.com/jupyterhub/jupyterhub/pull/3407] (@yuvipanda [https://github.com/yuvipanda])

	Use ‘secrets’ module to generate secrets #3394 [https://github.com/jupyterhub/jupyterhub/pull/3394] (@yuvipanda [https://github.com/yuvipanda])

	Allow cookie_secret to be set to a hexadecimal string #3343 [https://github.com/jupyterhub/jupyterhub/pull/3343] (@consideRatio [https://github.com/consideRatio])

	Clear tornado xsrf cookie on logout #3341 [https://github.com/jupyterhub/jupyterhub/pull/3341] (@dtaniwaki [https://github.com/dtaniwaki])

	always log slow requests at least at info-level #3338 [https://github.com/jupyterhub/jupyterhub/pull/3338] (@minrk [https://github.com/minrk])

Bugs fixed

	always start redirect count at 1 when redirecting /hub/user/:name -> /user/:name #3377 [https://github.com/jupyterhub/jupyterhub/pull/3377] (@minrk [https://github.com/minrk])

	Always raise on failed token creation #3370 [https://github.com/jupyterhub/jupyterhub/pull/3370] (@minrk [https://github.com/minrk])

	make_singleuser_app: patch-in HubAuthenticatedHandler at lower priority #3347 [https://github.com/jupyterhub/jupyterhub/pull/3347] (@minrk [https://github.com/minrk])

	Fix pagination with named servers #3335 [https://github.com/jupyterhub/jupyterhub/pull/3335] (@rcthomas [https://github.com/rcthomas])

Maintenance and upkeep improvements

	typos in onbuild, demo images for push #3429 [https://github.com/jupyterhub/jupyterhub/pull/3429] (@minrk [https://github.com/minrk])

	Disable docker jupyterhub-demo arm64 build #3425 [https://github.com/jupyterhub/jupyterhub/pull/3425] (@manics [https://github.com/manics])

	Docker arm64 builds #3421 [https://github.com/jupyterhub/jupyterhub/pull/3421] (@manics [https://github.com/manics])

	avoid deprecated engine.table_names #3392 [https://github.com/jupyterhub/jupyterhub/pull/3392] (@minrk [https://github.com/minrk])

	alpine dockerfile: avoid compilation by getting some deps from apk #3386 [https://github.com/jupyterhub/jupyterhub/pull/3386] (@minrk [https://github.com/minrk])

	Fix sqlachemy.interfaces.PoolListener deprecation for tests #3383 [https://github.com/jupyterhub/jupyterhub/pull/3383] (@IvanaH8 [https://github.com/IvanaH8])

	Update pre-commit hooks versions #3362 [https://github.com/jupyterhub/jupyterhub/pull/3362] (@consideRatio [https://github.com/consideRatio])

	add (and run) prettier pre-commit hook #3360 [https://github.com/jupyterhub/jupyterhub/pull/3360] (@minrk [https://github.com/minrk])

	move get_custom_html to base Authenticator class #3359 [https://github.com/jupyterhub/jupyterhub/pull/3359] (@minrk [https://github.com/minrk])

	publish release outputs as artifacts #3349 [https://github.com/jupyterhub/jupyterhub/pull/3349] (@minrk [https://github.com/minrk])

	[TST] Do not implicitly create users in auth_header #3344 [https://github.com/jupyterhub/jupyterhub/pull/3344] (@minrk [https://github.com/minrk])

	specify minimum alembic 1.4 #3339 [https://github.com/jupyterhub/jupyterhub/pull/3339] (@minrk [https://github.com/minrk])

	ci: github actions, allow for manual test runs and fix badge in readme #3324 [https://github.com/jupyterhub/jupyterhub/pull/3324] (@consideRatio [https://github.com/consideRatio])

	publish releases from github actions #3305 [https://github.com/jupyterhub/jupyterhub/pull/3305] (@minrk [https://github.com/minrk])

Documentation improvements

	DOC: Conform to numpydoc. #3428 [https://github.com/jupyterhub/jupyterhub/pull/3428] (@Carreau [https://github.com/Carreau])

	Fix link to jupyterhub/jupyterhub-the-hard-way #3417 [https://github.com/jupyterhub/jupyterhub/pull/3417] (@manics [https://github.com/manics])

	Changelog for 1.4 #3415 [https://github.com/jupyterhub/jupyterhub/pull/3415] (@minrk [https://github.com/minrk])

	Fastapi example #3403 [https://github.com/jupyterhub/jupyterhub/pull/3403] (@kafonek [https://github.com/kafonek])

	Added Azure AD as a supported authenticator. #3401 [https://github.com/jupyterhub/jupyterhub/pull/3401] (@maxshowarth [https://github.com/maxshowarth])

	Remove the hard way guide #3375 [https://github.com/jupyterhub/jupyterhub/pull/3375] (@manics [https://github.com/manics])

	:memo: Fix telemetry section #3333 [https://github.com/jupyterhub/jupyterhub/pull/3333] (@trallard [https://github.com/trallard])

	Fix the help related to the proxy check #3332 [https://github.com/jupyterhub/jupyterhub/pull/3332] (@jiajunjie [https://github.com/jiajunjie])

	Mention Jupyter Server as optional single-user backend in documentation #3329 [https://github.com/jupyterhub/jupyterhub/pull/3329] (@Zsailer [https://github.com/Zsailer])

	Fix mixup in comment regarding the sync parameter #3325 [https://github.com/jupyterhub/jupyterhub/pull/3325] (@andrewisplinghoff [https://github.com/andrewisplinghoff])

	docs: fix simple typo, funciton -> function #3314 [https://github.com/jupyterhub/jupyterhub/pull/3314] (@timgates42 [https://github.com/timgates42])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-12-11&to=2021-04-19&type=c])

@00Kai0 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A00Kai0+updated%3A2020-12-11..2021-04-19&type=Issues] | @8rV1n [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A8rV1n+updated%3A2020-12-11..2021-04-19&type=Issues] | @akhilputhiry [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aakhilputhiry+updated%3A2020-12-11..2021-04-19&type=Issues] | @alexal [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexal+updated%3A2020-12-11..2021-04-19&type=Issues] | @analytically [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aanalytically+updated%3A2020-12-11..2021-04-19&type=Issues] | @andreamazzoni [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aandreamazzoni+updated%3A2020-12-11..2021-04-19&type=Issues] | @andrewisplinghoff [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aandrewisplinghoff+updated%3A2020-12-11..2021-04-19&type=Issues] | @BertR [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ABertR+updated%3A2020-12-11..2021-04-19&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-12-11..2021-04-19&type=Issues] | @bitnik [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abitnik+updated%3A2020-12-11..2021-04-19&type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abollwyvl+updated%3A2020-12-11..2021-04-19&type=Issues] | @carluri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acarluri+updated%3A2020-12-11..2021-04-19&type=Issues] | @Carreau [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ACarreau+updated%3A2020-12-11..2021-04-19&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-12-11..2021-04-19&type=Issues] | @davidedelvento [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidedelvento+updated%3A2020-12-11..2021-04-19&type=Issues] | @dhirschfeld [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adhirschfeld+updated%3A2020-12-11..2021-04-19&type=Issues] | @dmpe [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Admpe+updated%3A2020-12-11..2021-04-19&type=Issues] | @dsblank [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adsblank+updated%3A2020-12-11..2021-04-19&type=Issues] | @dtaniwaki [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adtaniwaki+updated%3A2020-12-11..2021-04-19&type=Issues] | @echarles [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aecharles+updated%3A2020-12-11..2021-04-19&type=Issues] | @elgalu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aelgalu+updated%3A2020-12-11..2021-04-19&type=Issues] | @eran-pinhas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aeran-pinhas+updated%3A2020-12-11..2021-04-19&type=Issues] | @gaebor [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agaebor+updated%3A2020-12-11..2021-04-19&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-12-11..2021-04-19&type=Issues] | @gsemet [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agsemet+updated%3A2020-12-11..2021-04-19&type=Issues] | @gweis [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agweis+updated%3A2020-12-11..2021-04-19&type=Issues] | @hynek2001 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ahynek2001+updated%3A2020-12-11..2021-04-19&type=Issues] | @ianabc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aianabc+updated%3A2020-12-11..2021-04-19&type=Issues] | @ibre5041 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aibre5041+updated%3A2020-12-11..2021-04-19&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2020-12-11..2021-04-19&type=Issues] | @jhegedus42 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajhegedus42+updated%3A2020-12-11..2021-04-19&type=Issues] | @jhermann [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajhermann+updated%3A2020-12-11..2021-04-19&type=Issues] | @jiajunjie [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajiajunjie+updated%3A2020-12-11..2021-04-19&type=Issues] | @jtlz2 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajtlz2+updated%3A2020-12-11..2021-04-19&type=Issues] | @kafonek [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akafonek+updated%3A2020-12-11..2021-04-19&type=Issues] | @katsar0v [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akatsar0v+updated%3A2020-12-11..2021-04-19&type=Issues] | @kinow [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akinow+updated%3A2020-12-11..2021-04-19&type=Issues] | @krinsman [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akrinsman+updated%3A2020-12-11..2021-04-19&type=Issues] | @laurensdv [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alaurensdv+updated%3A2020-12-11..2021-04-19&type=Issues] | @lits789 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alits789+updated%3A2020-12-11..2021-04-19&type=Issues] | @m-alekseev [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Am-alekseev+updated%3A2020-12-11..2021-04-19&type=Issues] | @mabbasi90 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amabbasi90+updated%3A2020-12-11..2021-04-19&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-12-11..2021-04-19&type=Issues] | @manniche [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanniche+updated%3A2020-12-11..2021-04-19&type=Issues] | @maxshowarth [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amaxshowarth+updated%3A2020-12-11..2021-04-19&type=Issues] | @mdivk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amdivk+updated%3A2020-12-11..2021-04-19&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-12-11..2021-04-19&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-12-11..2021-04-19&type=Issues] | @mogthesprog [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amogthesprog+updated%3A2020-12-11..2021-04-19&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-12-11..2021-04-19&type=Issues] | @nsshah1288 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ansshah1288+updated%3A2020-12-11..2021-04-19&type=Issues] | @olifre [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aolifre+updated%3A2020-12-11..2021-04-19&type=Issues] | @PandaWhoCodes [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3APandaWhoCodes+updated%3A2020-12-11..2021-04-19&type=Issues] | @pawsaw [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apawsaw+updated%3A2020-12-11..2021-04-19&type=Issues] | @phozzy [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aphozzy+updated%3A2020-12-11..2021-04-19&type=Issues] | @playermanny2 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aplayermanny2+updated%3A2020-12-11..2021-04-19&type=Issues] | @rabsr [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arabsr+updated%3A2020-12-11..2021-04-19&type=Issues] | @randy3k [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arandy3k+updated%3A2020-12-11..2021-04-19&type=Issues] | @rawrgulmuffins [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arawrgulmuffins+updated%3A2020-12-11..2021-04-19&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-12-11..2021-04-19&type=Issues] | @rebeca-maia [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arebeca-maia+updated%3A2020-12-11..2021-04-19&type=Issues] | @rebenkoy [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arebenkoy+updated%3A2020-12-11..2021-04-19&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-12-11..2021-04-19&type=Issues] | @robnagler [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arobnagler+updated%3A2020-12-11..2021-04-19&type=Issues] | @ronaldpetty [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aronaldpetty+updated%3A2020-12-11..2021-04-19&type=Issues] | @ryanlovett [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryanlovett+updated%3A2020-12-11..2021-04-19&type=Issues] | @ryogesh [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryogesh+updated%3A2020-12-11..2021-04-19&type=Issues] | @sbailey-auro [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asbailey-auro+updated%3A2020-12-11..2021-04-19&type=Issues] | @sigurdurb [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asigurdurb+updated%3A2020-12-11..2021-04-19&type=Issues] | @SivaAccionLabs [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ASivaAccionLabs+updated%3A2020-12-11..2021-04-19&type=Issues] | @sougou [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asougou+updated%3A2020-12-11..2021-04-19&type=Issues] | @stv0g [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astv0g+updated%3A2020-12-11..2021-04-19&type=Issues] | @sudi007 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asudi007+updated%3A2020-12-11..2021-04-19&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-12-11..2021-04-19&type=Issues] | @tathagata [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atathagata+updated%3A2020-12-11..2021-04-19&type=Issues] | @timgates42 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atimgates42+updated%3A2020-12-11..2021-04-19&type=Issues] | @trallard [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atrallard+updated%3A2020-12-11..2021-04-19&type=Issues] | @vlizanae [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avlizanae+updated%3A2020-12-11..2021-04-19&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-12-11..2021-04-19&type=Issues] | @whitespaceninja [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awhitespaceninja+updated%3A2020-12-11..2021-04-19&type=Issues] | @whlteXbread [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AwhlteXbread+updated%3A2020-12-11..2021-04-19&type=Issues] | @willingc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awillingc+updated%3A2020-12-11..2021-04-19&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-12-11..2021-04-19&type=Issues] | @Zsailer [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AZsailer+updated%3A2020-12-11..2021-04-19&type=Issues]

1.3

JupyterHub 1.3 is a small feature release. Highlights include:

	Require Python >=3.6 (jupyterhub 1.2 is the last release to support 3.5)

	Add a ?state= filter for getting user list, allowing much quicker responses
when retrieving a small fraction of users.
state can be active, inactive, or ready.

	prometheus metrics now include a jupyterhub_ prefix,
so deployments may need to update their grafana charts to match.

	page templates can now be async [https://jinja.palletsprojects.com/en/2.11.x/api/#async-support]!

1.3.0 [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...1.3.0]

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...1.3.0])

Enhancements made

	allow services to call /api/user to identify themselves #3293 [https://github.com/jupyterhub/jupyterhub/pull/3293] (@minrk [https://github.com/minrk])

	Add optional user agreement to login screen #3264 [https://github.com/jupyterhub/jupyterhub/pull/3264] (@tlvu [https://github.com/tlvu])

	[Metrics] Add prefix to prometheus metrics to group all jupyterhub metrics #3243 [https://github.com/jupyterhub/jupyterhub/pull/3243] (@agp8x [https://github.com/agp8x])

	Allow options_from_form to be configurable #3225 [https://github.com/jupyterhub/jupyterhub/pull/3225] (@cbanek [https://github.com/cbanek])

	add ?state= filter for GET /users #3177 [https://github.com/jupyterhub/jupyterhub/pull/3177] (@minrk [https://github.com/minrk])

	Enable async support in jinja2 templates #3176 [https://github.com/jupyterhub/jupyterhub/pull/3176] (@yuvipanda [https://github.com/yuvipanda])

Bugs fixed

	fix increasing pagination limits #3294 [https://github.com/jupyterhub/jupyterhub/pull/3294] (@minrk [https://github.com/minrk])

	fix and test TOTAL_USERS count #3289 [https://github.com/jupyterhub/jupyterhub/pull/3289] (@minrk [https://github.com/minrk])

	Fix asyncio deprecation asyncio.Task.all_tasks #3298 [https://github.com/jupyterhub/jupyterhub/pull/3298] (@coffeebenzene [https://github.com/coffeebenzene])

Maintenance and upkeep improvements

	bump oldest-required prometheus-client #3292 [https://github.com/jupyterhub/jupyterhub/pull/3292] (@minrk [https://github.com/minrk])

	bump black pre-commit hook to 20.8 #3287 [https://github.com/jupyterhub/jupyterhub/pull/3287] (@minrk [https://github.com/minrk])

	Test internal_ssl separately #3266 [https://github.com/jupyterhub/jupyterhub/pull/3266] (@0mar [https://github.com/0mar])

	wait for pending spawns in spawn_form_admin_access #3253 [https://github.com/jupyterhub/jupyterhub/pull/3253] (@minrk [https://github.com/minrk])

	Assume py36 and remove @gen.coroutine etc. #3242 [https://github.com/jupyterhub/jupyterhub/pull/3242] (@consideRatio [https://github.com/consideRatio])

Documentation improvements

	Fix curl in jupyter announcements #3286 [https://github.com/jupyterhub/jupyterhub/pull/3286] (@Sangarshanan [https://github.com/Sangarshanan])

	CONTRIBUTING: Fix contributor guide URL #3281 [https://github.com/jupyterhub/jupyterhub/pull/3281] (@olifre [https://github.com/olifre])

	Update services.md #3267 [https://github.com/jupyterhub/jupyterhub/pull/3267] (@slemonide [https://github.com/slemonide])

	[Docs] Fix https reverse proxy redirect issues #3244 [https://github.com/jupyterhub/jupyterhub/pull/3244] (@mhwasil [https://github.com/mhwasil])

	Fixed idle-culler references. #3300 [https://github.com/jupyterhub/jupyterhub/pull/3300] (@mxjeff [https://github.com/mxjeff])

	Remove the extra parenthesis in service.md #3303 [https://github.com/jupyterhub/jupyterhub/pull/3303] (@Sangarshanan [https://github.com/Sangarshanan])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-10-30&to=2020-12-11&type=c])

@0mar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0mar+updated%3A2020-10-30..2020-12-11&type=Issues] | @agp8x [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aagp8x+updated%3A2020-10-30..2020-12-11&type=Issues] | @alexweav [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexweav+updated%3A2020-10-30..2020-12-11&type=Issues] | @belfhi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abelfhi+updated%3A2020-10-30..2020-12-11&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-10-30..2020-12-11&type=Issues] | @cbanek [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acbanek+updated%3A2020-10-30..2020-12-11&type=Issues] | @cmd-ntrf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acmd-ntrf+updated%3A2020-10-30..2020-12-11&type=Issues] | @coffeebenzene [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acoffeebenzene+updated%3A2020-10-30..2020-12-11&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-10-30..2020-12-11&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2020-10-30..2020-12-11&type=Issues] | @fcollonval [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Afcollonval+updated%3A2020-10-30..2020-12-11&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-10-30..2020-12-11&type=Issues] | @ianabc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aianabc+updated%3A2020-10-30..2020-12-11&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2020-10-30..2020-12-11&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-10-30..2020-12-11&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-10-30..2020-12-11&type=Issues] | @mhwasil [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amhwasil+updated%3A2020-10-30..2020-12-11&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-10-30..2020-12-11&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-10-30..2020-12-11&type=Issues] | @mxjeff [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amxjeff+updated%3A2020-10-30..2020-12-11&type=Issues] | @olifre [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aolifre+updated%3A2020-10-30..2020-12-11&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-10-30..2020-12-11&type=Issues] | @rgbkrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Argbkrk+updated%3A2020-10-30..2020-12-11&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-10-30..2020-12-11&type=Issues] | @Sangarshanan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ASangarshanan+updated%3A2020-10-30..2020-12-11&type=Issues] | @slemonide [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aslemonide+updated%3A2020-10-30..2020-12-11&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-10-30..2020-12-11&type=Issues] | @tlvu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atlvu+updated%3A2020-10-30..2020-12-11&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-10-30..2020-12-11&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-10-30..2020-12-11&type=Issues]

1.2

1.2.2 [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...1.2.2] 2020-11-27

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...41f291c0c973223c33a6aa1fa86d5d57f297be78])

Enhancements made

	Standardize “Sign in” capitalization on the login page #3252 [https://github.com/jupyterhub/jupyterhub/pull/3252] (@cmd-ntrf [https://github.com/cmd-ntrf])

Bugs fixed

	Fix RootHandler when default_url is a callable #3265 [https://github.com/jupyterhub/jupyterhub/pull/3265] (@danlester [https://github.com/danlester])

	Only preserve params when ?next= is unspecified #3261 [https://github.com/jupyterhub/jupyterhub/pull/3261] (@minrk [https://github.com/minrk])

	[Windows] Improve robustness when detecting and closing existing proxy processes #3237 [https://github.com/jupyterhub/jupyterhub/pull/3237] (@alexweav [https://github.com/alexweav])

Maintenance and upkeep improvements

	Environment marker on pamela #3255 [https://github.com/jupyterhub/jupyterhub/pull/3255] (@fcollonval [https://github.com/fcollonval])

	remove push-branch conditions for CI #3250 [https://github.com/jupyterhub/jupyterhub/pull/3250] (@minrk [https://github.com/minrk])

	Migrate from travis to GitHub actions #3246 [https://github.com/jupyterhub/jupyterhub/pull/3246] (@consideRatio [https://github.com/consideRatio])

Documentation improvements

	Update services-basics.md to use jupyterhub_idle_culler #3257 [https://github.com/jupyterhub/jupyterhub/pull/3257] (@manics [https://github.com/manics])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-10-30&to=2020-11-27&type=c])

@alexweav [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexweav+updated%3A2020-10-30..2020-11-27&type=Issues] | @belfhi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abelfhi+updated%3A2020-10-30..2020-11-27&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-10-30..2020-11-27&type=Issues] | @cmd-ntrf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acmd-ntrf+updated%3A2020-10-30..2020-11-27&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-10-30..2020-11-27&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2020-10-30..2020-11-27&type=Issues] | @fcollonval [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Afcollonval+updated%3A2020-10-30..2020-11-27&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-10-30..2020-11-27&type=Issues] | @ianabc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aianabc+updated%3A2020-10-30..2020-11-27&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2020-10-30..2020-11-27&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-10-30..2020-11-27&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-10-30..2020-11-27&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-10-30..2020-11-27&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-10-30..2020-11-27&type=Issues] | @olifre [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aolifre+updated%3A2020-10-30..2020-11-27&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-10-30..2020-11-27&type=Issues] | @rgbkrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Argbkrk+updated%3A2020-10-30..2020-11-27&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-10-30..2020-11-27&type=Issues] | @slemonide [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aslemonide+updated%3A2020-10-30..2020-11-27&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-10-30..2020-11-27&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-10-30..2020-11-27&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-10-30..2020-11-27&type=Issues]

1.2.1 [https://github.com/jupyterhub/jupyterhub/compare/1.2.0...1.2.1] 2020-10-30

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.2.0...1.2.1])

Bugs fixed

	JupyterHub services’ oauth_no_confirm configuration regression in 1.2.0 #3234 [https://github.com/jupyterhub/jupyterhub/pull/3234] (@bitnik [https://github.com/bitnik])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-10-29&to=2020-10-30&type=c])

@bitnik [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abitnik+updated%3A2020-10-29..2020-10-30&type=Issues]

1.2.0 [https://github.com/jupyterhub/jupyterhub/compare/1.1.0...1.2.0] 2020-10-29

JupyterHub 1.2 is an incremental release with lots of small improvements.
It is unlikely that users will have to change much to upgrade,
but lots of new things are possible and/or better!

There are no database schema changes requiring migration from 1.1 to 1.2.

Highlights:

	Deprecate black/whitelist configuration fields in favor of more inclusive blocked/allowed language. For example: c.Authenticator.allowed_users = {'user', ...}

	More configuration of page templates and service display

	Pagination of the admin page improving performance with large numbers of users

	Improved control of user redirect

	Support for jupyter-server [https://jupyter-server.readthedocs.io/en/latest/]-based single-user servers, such as Voilà [https://voila-gallery.org] and latest JupyterLab.

	Lots more improvements to documentation, HTML pages, and customizations

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.1.0...1.2.0])

Enhancements made

	make pagination configurable #3229 [https://github.com/jupyterhub/jupyterhub/pull/3229] (@minrk [https://github.com/minrk])

	Make api_request to CHP’s REST API more reliable #3223 [https://github.com/jupyterhub/jupyterhub/pull/3223] (@consideRatio [https://github.com/consideRatio])

	Control service display #3160 [https://github.com/jupyterhub/jupyterhub/pull/3160] (@rcthomas [https://github.com/rcthomas])

	Add a footer block + wrap the admin footer in this block #3136 [https://github.com/jupyterhub/jupyterhub/pull/3136] (@pabepadu [https://github.com/pabepadu])

	Allow JupyterHub.default_url to be a callable #3133 [https://github.com/jupyterhub/jupyterhub/pull/3133] (@danlester [https://github.com/danlester])

	Allow head requests for the health endpoint #3131 [https://github.com/jupyterhub/jupyterhub/pull/3131] (@rkevin-arch [https://github.com/rkevin-arch])

	Hide hamburger button menu in mobile/responsive mode and fix other minor issues #3103 [https://github.com/jupyterhub/jupyterhub/pull/3103] (@kinow [https://github.com/kinow])

	build jupyterhub/jupyterhub-demo image on docker hub #3083 [https://github.com/jupyterhub/jupyterhub/pull/3083] (@minrk [https://github.com/minrk])

	Add JupyterHub Demo docker image #3059 [https://github.com/jupyterhub/jupyterhub/pull/3059] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Warn if both bind_url and ip/port/base_url are set #3057 [https://github.com/jupyterhub/jupyterhub/pull/3057] (@GeorgianaElena [https://github.com/GeorgianaElena])

	UI Feedback on Submit #3028 [https://github.com/jupyterhub/jupyterhub/pull/3028] (@possiblyMikeB [https://github.com/possiblyMikeB])

	Support kubespawner running on a IPv6 only cluster #3020 [https://github.com/jupyterhub/jupyterhub/pull/3020] (@stv0g [https://github.com/stv0g])

	Spawn with options passed in query arguments to /spawn #3013 [https://github.com/jupyterhub/jupyterhub/pull/3013] (@twalcari [https://github.com/twalcari])

	SpawnHandler POST with user form options displays the spawn-pending page #2978 [https://github.com/jupyterhub/jupyterhub/pull/2978] (@danlester [https://github.com/danlester])

	Start named servers by pressing the Enter key #2960 [https://github.com/jupyterhub/jupyterhub/pull/2960] (@jtpio [https://github.com/jtpio])

	Keep the URL fragments after spawning an application #2952 [https://github.com/jupyterhub/jupyterhub/pull/2952] (@kinow [https://github.com/kinow])

	Allow implicit spawn via javascript redirect #2941 [https://github.com/jupyterhub/jupyterhub/pull/2941] (@minrk [https://github.com/minrk])

	make init_spawners check O(running servers) not O(total users) #2936 [https://github.com/jupyterhub/jupyterhub/pull/2936] (@minrk [https://github.com/minrk])

	Add favicon to the base page template #2930 [https://github.com/jupyterhub/jupyterhub/pull/2930] (@JohnPaton [https://github.com/JohnPaton])

	Adding pagination in the admin panel #2929 [https://github.com/jupyterhub/jupyterhub/pull/2929] (@cbjuan [https://github.com/cbjuan])

	Generate prometheus metrics docs #2891 [https://github.com/jupyterhub/jupyterhub/pull/2891] (@rajat404 [https://github.com/rajat404])

	Add support for Jupyter Server #2601 [https://github.com/jupyterhub/jupyterhub/pull/2601] (@yuvipanda [https://github.com/yuvipanda])

Bugs fixed

	Fix #2284 must be sent from authorization page #3219 [https://github.com/jupyterhub/jupyterhub/pull/3219] (@elgalu [https://github.com/elgalu])

	avoid specifying default_value=None in Command traits #3208 [https://github.com/jupyterhub/jupyterhub/pull/3208] (@minrk [https://github.com/minrk])

	Prevent OverflowErrors in exponential_backoff() #3204 [https://github.com/jupyterhub/jupyterhub/pull/3204] (@kreuzert [https://github.com/kreuzert])

	update prometheus metrics for server spawn when it fails with exception #3150 [https://github.com/jupyterhub/jupyterhub/pull/3150] (@yhal-nesi [https://github.com/yhal-nesi])

	jupyterhub/utils: Load system default CA certificates in make_ssl_context #3140 [https://github.com/jupyterhub/jupyterhub/pull/3140] (@chancez [https://github.com/chancez])

	admin page sorts on spawner last_activity instead of user last_activity #3137 [https://github.com/jupyterhub/jupyterhub/pull/3137] (@lydian [https://github.com/lydian])

	Fix the services dropdown on the admin page #3132 [https://github.com/jupyterhub/jupyterhub/pull/3132] (@pabepadu [https://github.com/pabepadu])

	Don’t log a warning when slow_spawn_timeout is disabled #3127 [https://github.com/jupyterhub/jupyterhub/pull/3127] (@mriedem [https://github.com/mriedem])

	app.py: Work around incompatibility between Tornado 6 and asyncio proactor event loop in python 3.8 on Windows #3123 [https://github.com/jupyterhub/jupyterhub/pull/3123] (@alexweav [https://github.com/alexweav])

	jupyterhub/user: clear spawner state after post_stop_hook #3121 [https://github.com/jupyterhub/jupyterhub/pull/3121] (@rkdarst [https://github.com/rkdarst])

	fix for stopping named server deleting default server and tests #3109 [https://github.com/jupyterhub/jupyterhub/pull/3109] (@kxiao-fn [https://github.com/kxiao-fn])

	Hide hamburger button menu in mobile/responsive mode and fix other minor issues #3103 [https://github.com/jupyterhub/jupyterhub/pull/3103] (@kinow [https://github.com/kinow])

	Rename Authenticator.white/blacklist to allowed/blocked #3090 [https://github.com/jupyterhub/jupyterhub/pull/3090] (@minrk [https://github.com/minrk])

	Include the query string parameters when redirecting to a new URL #3089 [https://github.com/jupyterhub/jupyterhub/pull/3089] (@kinow [https://github.com/kinow])

	Make delete_invalid_users configurable #3087 [https://github.com/jupyterhub/jupyterhub/pull/3087] (@fcollonval [https://github.com/fcollonval])

	Ensure client dependencies build before wheel #3082 [https://github.com/jupyterhub/jupyterhub/pull/3082] (@diurnalist [https://github.com/diurnalist])

	make Spawner.environment config highest priority #3081 [https://github.com/jupyterhub/jupyterhub/pull/3081] (@minrk [https://github.com/minrk])

	Changing start my server button link to spawn url once server is stopped #3042 [https://github.com/jupyterhub/jupyterhub/pull/3042] (@rabsr [https://github.com/rabsr])

	Fix CSS on admin page version listing #3035 [https://github.com/jupyterhub/jupyterhub/pull/3035] (@vilhelmen [https://github.com/vilhelmen])

	Fix user_row endblock in admin template #3015 [https://github.com/jupyterhub/jupyterhub/pull/3015] (@jtpio [https://github.com/jtpio])

	Fix –generate-config bug when specifying a filename #2907 [https://github.com/jupyterhub/jupyterhub/pull/2907] (@consideRatio [https://github.com/consideRatio])

	Handle the protocol when ssl is enabled and log the right URL #2773 [https://github.com/jupyterhub/jupyterhub/pull/2773] (@kinow [https://github.com/kinow])

Maintenance and upkeep improvements

	Update travis-ci badge in README.md #3232 [https://github.com/jupyterhub/jupyterhub/pull/3232] (@consideRatio [https://github.com/consideRatio])

	stop building docs on circleci #3209 [https://github.com/jupyterhub/jupyterhub/pull/3209] (@minrk [https://github.com/minrk])

	Upgraded Jquery dep #3174 [https://github.com/jupyterhub/jupyterhub/pull/3174] (@AngelOnFira [https://github.com/AngelOnFira])

	Don’t allow ‘python:3.8 + master dependencies’ to fail #3157 [https://github.com/jupyterhub/jupyterhub/pull/3157] (@manics [https://github.com/manics])

	Update Dockerfile to ubuntu:focal (Python 3.8) #3156 [https://github.com/jupyterhub/jupyterhub/pull/3156] (@manics [https://github.com/manics])

	Simplify code of the health check handler #3149 [https://github.com/jupyterhub/jupyterhub/pull/3149] (@betatim [https://github.com/betatim])

	Get error description from error key vs error_description key #3147 [https://github.com/jupyterhub/jupyterhub/pull/3147] (@jgwerner [https://github.com/jgwerner])

	Implement singleuser with mixins #3128 [https://github.com/jupyterhub/jupyterhub/pull/3128] (@minrk [https://github.com/minrk])

	only build tagged versions on docker tags #3118 [https://github.com/jupyterhub/jupyterhub/pull/3118] (@minrk [https://github.com/minrk])

	Log slow_stop_timeout when hit like slow_spawn_timeout #3111 [https://github.com/jupyterhub/jupyterhub/pull/3111] (@mriedem [https://github.com/mriedem])

	loosen jupyter-telemetry pin #3102 [https://github.com/jupyterhub/jupyterhub/pull/3102] (@minrk [https://github.com/minrk])

	Remove old context-less print statement #3100 [https://github.com/jupyterhub/jupyterhub/pull/3100] (@mriedem [https://github.com/mriedem])

	Allow python:3.8 + master dependencies to fail #3079 [https://github.com/jupyterhub/jupyterhub/pull/3079] (@manics [https://github.com/manics])

	Test with some master dependencies. #3076 [https://github.com/jupyterhub/jupyterhub/pull/3076] (@Carreau [https://github.com/Carreau])

	synchronize implementation of expiring values #3072 [https://github.com/jupyterhub/jupyterhub/pull/3072] (@minrk [https://github.com/minrk])

	More consistent behavior for UserDict.get and key in UserDict #3071 [https://github.com/jupyterhub/jupyterhub/pull/3071] (@minrk [https://github.com/minrk])

	pin jupyter_telemetry dependency #3067 [https://github.com/jupyterhub/jupyterhub/pull/3067] (@Zsailer [https://github.com/Zsailer])

	Use the issue templates from the central repo #3056 [https://github.com/jupyterhub/jupyterhub/pull/3056] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Update links to the black GitHub repository #3054 [https://github.com/jupyterhub/jupyterhub/pull/3054] (@jtpio [https://github.com/jtpio])

	Log successful /health requests as debug level #3047 [https://github.com/jupyterhub/jupyterhub/pull/3047] (@consideRatio [https://github.com/consideRatio])

	Fix broken test due to BeautifulSoup 4.9.0 behavior change #3025 [https://github.com/jupyterhub/jupyterhub/pull/3025] (@twalcari [https://github.com/twalcari])

	Remove unused imports #3019 [https://github.com/jupyterhub/jupyterhub/pull/3019] (@stv0g [https://github.com/stv0g])

	Use pip instead of conda for building the docs on RTD #3010 [https://github.com/jupyterhub/jupyterhub/pull/3010] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Avoid redundant logging of jupyterhub version mismatches #2971 [https://github.com/jupyterhub/jupyterhub/pull/2971] (@mriedem [https://github.com/mriedem])

	Add .vscode to gitignore #2959 [https://github.com/jupyterhub/jupyterhub/pull/2959] (@jtpio [https://github.com/jtpio])

	preserve auth type when logging obfuscated auth header #2953 [https://github.com/jupyterhub/jupyterhub/pull/2953] (@minrk [https://github.com/minrk])

	make spawner:server relationship explicitly one to one #2944 [https://github.com/jupyterhub/jupyterhub/pull/2944] (@minrk [https://github.com/minrk])

	Add what we need with some margin to Dockerfile’s build stage #2905 [https://github.com/jupyterhub/jupyterhub/pull/2905] (@consideRatio [https://github.com/consideRatio])

	bump reorder-imports hook #2899 [https://github.com/jupyterhub/jupyterhub/pull/2899] (@minrk [https://github.com/minrk])

Documentation improvements

	Fix typo in documentation #3226 [https://github.com/jupyterhub/jupyterhub/pull/3226] (@xlotlu [https://github.com/xlotlu])

	[docs] Remove duplicate line in changelog for 1.1.0 #3207 [https://github.com/jupyterhub/jupyterhub/pull/3207] (@kinow [https://github.com/kinow])

	changelog for 1.2.0b1 #3192 [https://github.com/jupyterhub/jupyterhub/pull/3192] (@consideRatio [https://github.com/consideRatio])

	Add SELinux configuration for nginx #3185 [https://github.com/jupyterhub/jupyterhub/pull/3185] (@rainwoodman [https://github.com/rainwoodman])

	Mention the PAM pitfall on fedora. #3184 [https://github.com/jupyterhub/jupyterhub/pull/3184] (@rainwoodman [https://github.com/rainwoodman])

	Added extra documentation for endpoint /users/{name}/servers/{server_name}. #3159 [https://github.com/jupyterhub/jupyterhub/pull/3159] (@synchronizing [https://github.com/synchronizing])

	docs: please docs linter (move_cert docstring) #3151 [https://github.com/jupyterhub/jupyterhub/pull/3151] (@consideRatio [https://github.com/consideRatio])

	Needed NoEsacpe (NE) option for apache #3143 [https://github.com/jupyterhub/jupyterhub/pull/3143] (@basvandervlies [https://github.com/basvandervlies])

	Document external service api_tokens better #3142 [https://github.com/jupyterhub/jupyterhub/pull/3142] (@snickell [https://github.com/snickell])

	Remove idle culler example #3114 [https://github.com/jupyterhub/jupyterhub/pull/3114] (@yuvipanda [https://github.com/yuvipanda])

	docs: unsqueeze logo, remove unused CSS and templates #3107 [https://github.com/jupyterhub/jupyterhub/pull/3107] (@consideRatio [https://github.com/consideRatio])

	Update version in docs/rest-api.yaml #3104 [https://github.com/jupyterhub/jupyterhub/pull/3104] (@cmd-ntrf [https://github.com/cmd-ntrf])

	Replace zonca/remotespawner with NERSC/sshspawner #3086 [https://github.com/jupyterhub/jupyterhub/pull/3086] (@manics [https://github.com/manics])

	Remove already done named servers from roadmap #3084 [https://github.com/jupyterhub/jupyterhub/pull/3084] (@elgalu [https://github.com/elgalu])

	proxy settings might cause authentication errors #3078 [https://github.com/jupyterhub/jupyterhub/pull/3078] (@gatoniel [https://github.com/gatoniel])

	Add Configuration Reference section to docs #3077 [https://github.com/jupyterhub/jupyterhub/pull/3077] (@kinow [https://github.com/kinow])

	document upgrading from api_tokens to services config #3055 [https://github.com/jupyterhub/jupyterhub/pull/3055] (@minrk [https://github.com/minrk])

	[Docs] Disable proxy_buffering when using nginx reverse proxy #3048 [https://github.com/jupyterhub/jupyterhub/pull/3048] (@mhwasil [https://github.com/mhwasil])

	docs: add proxy_http_version 1.1 #3046 [https://github.com/jupyterhub/jupyterhub/pull/3046] (@ceocoder [https://github.com/ceocoder])

	#1018 PAM added in prerequisites #3040 [https://github.com/jupyterhub/jupyterhub/pull/3040] (@romainx [https://github.com/romainx])

	Fix use of auxiliary verb on index.rst #3022 [https://github.com/jupyterhub/jupyterhub/pull/3022] (@joshmeek [https://github.com/joshmeek])

	Fix docs CI test failure: duplicate object description #3021 [https://github.com/jupyterhub/jupyterhub/pull/3021] (@rkdarst [https://github.com/rkdarst])

	Update issue templates #3001 [https://github.com/jupyterhub/jupyterhub/pull/3001] (@GeorgianaElena [https://github.com/GeorgianaElena])

	fix wrong name on firewall #2997 [https://github.com/jupyterhub/jupyterhub/pull/2997] (@thuvh [https://github.com/thuvh])

	updating docs theme #2995 [https://github.com/jupyterhub/jupyterhub/pull/2995] (@choldgraf [https://github.com/choldgraf])

	Update contributor docs #2972 [https://github.com/jupyterhub/jupyterhub/pull/2972] (@mriedem [https://github.com/mriedem])

	Server.user_options rest-api documented #2966 [https://github.com/jupyterhub/jupyterhub/pull/2966] (@mriedem [https://github.com/mriedem])

	Pin sphinx theme #2956 [https://github.com/jupyterhub/jupyterhub/pull/2956] (@manics [https://github.com/manics])

	[doc] Fix couple typos in the documentation #2951 [https://github.com/jupyterhub/jupyterhub/pull/2951] (@kinow [https://github.com/kinow])

	Docs: Fixed grammar on landing page #2950 [https://github.com/jupyterhub/jupyterhub/pull/2950] (@alexdriedger [https://github.com/alexdriedger])

	add general faq #2946 [https://github.com/jupyterhub/jupyterhub/pull/2946] (@minrk [https://github.com/minrk])

	docs: use metachannel for faster environment solve #2943 [https://github.com/jupyterhub/jupyterhub/pull/2943] (@minrk [https://github.com/minrk])

	update docs environments #2942 [https://github.com/jupyterhub/jupyterhub/pull/2942] (@minrk [https://github.com/minrk])

	[doc] Add more docs about Cookies used for authentication in JupyterHub #2940 [https://github.com/jupyterhub/jupyterhub/pull/2940] (@kinow [https://github.com/kinow])

	[doc] Use fixed commit plus line number in github link #2939 [https://github.com/jupyterhub/jupyterhub/pull/2939] (@kinow [https://github.com/kinow])

	[doc] Fix link to SSL encryption from troubleshooting page #2938 [https://github.com/jupyterhub/jupyterhub/pull/2938] (@kinow [https://github.com/kinow])

	rest api: fix schema for remove parameter in rest api #2917 [https://github.com/jupyterhub/jupyterhub/pull/2917] (@minrk [https://github.com/minrk])

	Add troubleshooting topics #2914 [https://github.com/jupyterhub/jupyterhub/pull/2914] (@jgwerner [https://github.com/jgwerner])

	Several fixes to the doc #2904 [https://github.com/jupyterhub/jupyterhub/pull/2904] (@reneluria [https://github.com/reneluria])

	fix: ‘Non-ASCII character ‘\xc3’ #2901 [https://github.com/jupyterhub/jupyterhub/pull/2901] (@jgwerner [https://github.com/jgwerner])

	Generate prometheus metrics docs #2891 [https://github.com/jupyterhub/jupyterhub/pull/2891] (@rajat404 [https://github.com/rajat404])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-01-17&to=2020-10-29&type=c])

@0nebody [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0nebody+updated%3A2020-01-17..2020-10-29&type=Issues] | @1kastner [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A1kastner+updated%3A2020-01-17..2020-10-29&type=Issues] | @ahkui [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aahkui+updated%3A2020-01-17..2020-10-29&type=Issues] | @alexdriedger [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexdriedger+updated%3A2020-01-17..2020-10-29&type=Issues] | @alexweav [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexweav+updated%3A2020-01-17..2020-10-29&type=Issues] | @AlJohri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAlJohri+updated%3A2020-01-17..2020-10-29&type=Issues] | @Analect [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAnalect+updated%3A2020-01-17..2020-10-29&type=Issues] | @analytically [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aanalytically+updated%3A2020-01-17..2020-10-29&type=Issues] | @aneagoe [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aaneagoe+updated%3A2020-01-17..2020-10-29&type=Issues] | @AngelOnFira [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAngelOnFira+updated%3A2020-01-17..2020-10-29&type=Issues] | @barrachri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abarrachri+updated%3A2020-01-17..2020-10-29&type=Issues] | @basvandervlies [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abasvandervlies+updated%3A2020-01-17..2020-10-29&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-01-17..2020-10-29&type=Issues] | @bigbosst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abigbosst+updated%3A2020-01-17..2020-10-29&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ablink1073+updated%3A2020-01-17..2020-10-29&type=Issues] | @Cadair [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ACadair+updated%3A2020-01-17..2020-10-29&type=Issues] | @Carreau [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ACarreau+updated%3A2020-01-17..2020-10-29&type=Issues] | @cbjuan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acbjuan+updated%3A2020-01-17..2020-10-29&type=Issues] | @ceocoder [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aceocoder+updated%3A2020-01-17..2020-10-29&type=Issues] | @chancez [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Achancez+updated%3A2020-01-17..2020-10-29&type=Issues] | @choldgraf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acholdgraf+updated%3A2020-01-17..2020-10-29&type=Issues] | @Chrisjw42 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AChrisjw42+updated%3A2020-01-17..2020-10-29&type=Issues] | @cmd-ntrf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acmd-ntrf+updated%3A2020-01-17..2020-10-29&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-01-17..2020-10-29&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2020-01-17..2020-10-29&type=Issues] | @diurnalist [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adiurnalist+updated%3A2020-01-17..2020-10-29&type=Issues] | @Dmitry1987 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ADmitry1987+updated%3A2020-01-17..2020-10-29&type=Issues] | @dsblank [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adsblank+updated%3A2020-01-17..2020-10-29&type=Issues] | @dylex [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adylex+updated%3A2020-01-17..2020-10-29&type=Issues] | @echarles [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aecharles+updated%3A2020-01-17..2020-10-29&type=Issues] | @elgalu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aelgalu+updated%3A2020-01-17..2020-10-29&type=Issues] | @fcollonval [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Afcollonval+updated%3A2020-01-17..2020-10-29&type=Issues] | @gatoniel [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agatoniel+updated%3A2020-01-17..2020-10-29&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-01-17..2020-10-29&type=Issues] | @hnykda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ahnykda+updated%3A2020-01-17..2020-10-29&type=Issues] | @itssimon [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aitssimon+updated%3A2020-01-17..2020-10-29&type=Issues] | @jgwerner [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajgwerner+updated%3A2020-01-17..2020-10-29&type=Issues] | @JohnPaton [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AJohnPaton+updated%3A2020-01-17..2020-10-29&type=Issues] | @joshmeek [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajoshmeek+updated%3A2020-01-17..2020-10-29&type=Issues] | @jtpio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajtpio+updated%3A2020-01-17..2020-10-29&type=Issues] | @kinow [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akinow+updated%3A2020-01-17..2020-10-29&type=Issues] | @kreuzert [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akreuzert+updated%3A2020-01-17..2020-10-29&type=Issues] | @kxiao-fn [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akxiao-fn+updated%3A2020-01-17..2020-10-29&type=Issues] | @lesiano [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alesiano+updated%3A2020-01-17..2020-10-29&type=Issues] | @limimiking [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alimimiking+updated%3A2020-01-17..2020-10-29&type=Issues] | @lydian [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alydian+updated%3A2020-01-17..2020-10-29&type=Issues] | @mabbasi90 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amabbasi90+updated%3A2020-01-17..2020-10-29&type=Issues] | @maluhoss [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amaluhoss+updated%3A2020-01-17..2020-10-29&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-01-17..2020-10-29&type=Issues] | @matteoipri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amatteoipri+updated%3A2020-01-17..2020-10-29&type=Issues] | @mbmilligan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ambmilligan+updated%3A2020-01-17..2020-10-29&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-01-17..2020-10-29&type=Issues] | @mhwasil [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amhwasil+updated%3A2020-01-17..2020-10-29&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-01-17..2020-10-29&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-01-17..2020-10-29&type=Issues] | @nscozzaro [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Anscozzaro+updated%3A2020-01-17..2020-10-29&type=Issues] | @pabepadu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apabepadu+updated%3A2020-01-17..2020-10-29&type=Issues] | @possiblyMikeB [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ApossiblyMikeB+updated%3A2020-01-17..2020-10-29&type=Issues] | @psyvision [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apsyvision+updated%3A2020-01-17..2020-10-29&type=Issues] | @rabsr [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arabsr+updated%3A2020-01-17..2020-10-29&type=Issues] | @rainwoodman [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arainwoodman+updated%3A2020-01-17..2020-10-29&type=Issues] | @rajat404 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arajat404+updated%3A2020-01-17..2020-10-29&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-01-17..2020-10-29&type=Issues] | @reneluria [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Areneluria+updated%3A2020-01-17..2020-10-29&type=Issues] | @rgbkrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Argbkrk+updated%3A2020-01-17..2020-10-29&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-01-17..2020-10-29&type=Issues] | @rkevin-arch [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkevin-arch+updated%3A2020-01-17..2020-10-29&type=Issues] | @romainx [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aromainx+updated%3A2020-01-17..2020-10-29&type=Issues] | @ryanlovett [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryanlovett+updated%3A2020-01-17..2020-10-29&type=Issues] | @ryogesh [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryogesh+updated%3A2020-01-17..2020-10-29&type=Issues] | @sdague [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asdague+updated%3A2020-01-17..2020-10-29&type=Issues] | @snickell [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asnickell+updated%3A2020-01-17..2020-10-29&type=Issues] | @SonakshiGrover [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ASonakshiGrover+updated%3A2020-01-17..2020-10-29&type=Issues] | @ssanderson [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Assanderson+updated%3A2020-01-17..2020-10-29&type=Issues] | @stefanvangastel [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astefanvangastel+updated%3A2020-01-17..2020-10-29&type=Issues] | @steinad [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asteinad+updated%3A2020-01-17..2020-10-29&type=Issues] | @stephen-a2z [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astephen-a2z+updated%3A2020-01-17..2020-10-29&type=Issues] | @stevegore [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astevegore+updated%3A2020-01-17..2020-10-29&type=Issues] | @stv0g [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astv0g+updated%3A2020-01-17..2020-10-29&type=Issues] | @subgero [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asubgero+updated%3A2020-01-17..2020-10-29&type=Issues] | @sudi007 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asudi007+updated%3A2020-01-17..2020-10-29&type=Issues] | @summerswallow [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asummerswallow+updated%3A2020-01-17..2020-10-29&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-01-17..2020-10-29&type=Issues] | @synchronizing [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asynchronizing+updated%3A2020-01-17..2020-10-29&type=Issues] | @thuvh [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Athuvh+updated%3A2020-01-17..2020-10-29&type=Issues] | @tritemio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atritemio+updated%3A2020-01-17..2020-10-29&type=Issues] | @twalcari [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atwalcari+updated%3A2020-01-17..2020-10-29&type=Issues] | @vchandvankar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avchandvankar+updated%3A2020-01-17..2020-10-29&type=Issues] | @vilhelmen [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avilhelmen+updated%3A2020-01-17..2020-10-29&type=Issues] | @vlizanae [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avlizanae+updated%3A2020-01-17..2020-10-29&type=Issues] | @weimin [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aweimin+updated%3A2020-01-17..2020-10-29&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-01-17..2020-10-29&type=Issues] | @willingc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awillingc+updated%3A2020-01-17..2020-10-29&type=Issues] | @xlotlu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Axlotlu+updated%3A2020-01-17..2020-10-29&type=Issues] | @yhal-nesi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayhal-nesi+updated%3A2020-01-17..2020-10-29&type=Issues] | @ynnelson [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aynnelson+updated%3A2020-01-17..2020-10-29&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-01-17..2020-10-29&type=Issues] | @zonca [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Azonca+updated%3A2020-01-17..2020-10-29&type=Issues] | @Zsailer [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AZsailer+updated%3A2020-01-17..2020-10-29&type=Issues]

1.1

1.1.0 [https://github.com/jupyterhub/jupyterhub/compare/1.0.0...1.1.0] 2020-01-17

1.1 is a release with lots of accumulated fixes and improvements,
especially in performance, metrics, and customization.
There are no database changes in 1.1, so no database upgrade is required
when upgrading from 1.0 to 1.1.

Of particular interest to deployments with automatic health checking and/or large numbers of users is that the slow startup time
introduced in 1.0 by additional spawner validation can now be mitigated by JupyterHub.init_spawners_timeout,
allowing the Hub to become responsive before the spawners may have finished validating.

Several new Prometheus metrics are added (and others fixed!)
to measure sources of common performance issues,
such as proxy interactions and startup.

1.1 also begins adoption of the Jupyter telemetry project in JupyterHub,
See The Jupyter Telemetry docs [https://jupyter-telemetry.readthedocs.io]
for more info. The only events so far are starting and stopping servers,
but more will be added in future releases.

There are many more fixes and improvements listed below.
Thanks to everyone who has contributed to this release!

New

	LocalProcessSpawner should work on windows by using psutil.pid_exists #2882 [https://github.com/jupyterhub/jupyterhub/pull/2882] (@ociule [https://github.com/ociule])

	trigger auth_state_hook prior to options form, add auth_state to template namespace #2881 [https://github.com/jupyterhub/jupyterhub/pull/2881] (@minrk [https://github.com/minrk])

	Added guide ‘install jupyterlab the hard way’ #2110 #2842 [https://github.com/jupyterhub/jupyterhub/pull/2842] (@mangecoeur [https://github.com/mangecoeur])

	Add prometheus metric to measure hub startup time #2799 [https://github.com/jupyterhub/jupyterhub/pull/2799] (@rajat404 [https://github.com/rajat404])

	Add Spawner.auth_state_hook #2555 [https://github.com/jupyterhub/jupyterhub/pull/2555] (@rcthomas [https://github.com/rcthomas])

	Link services from jupyterhub pages #2763 [https://github.com/jupyterhub/jupyterhub/pull/2763] (@rcthomas [https://github.com/rcthomas])

	JupyterHub.user_redirect_hook is added to allow admins to customize /user-redirect/ behavior #2790 [https://github.com/jupyterhub/jupyterhub/pull/2790] (@yuvipanda [https://github.com/yuvipanda])

	Add prometheus metric to measure hub startup time #2799 [https://github.com/jupyterhub/jupyterhub/pull/2799] (@rajat404 [https://github.com/rajat404])

	Add prometheus metric to measure proxy route poll times #2798 [https://github.com/jupyterhub/jupyterhub/pull/2798] (@rajat404 [https://github.com/rajat404])

	PROXY_DELETE_DURATION_SECONDS prometheus metric is added, to measure proxy route deletion times #2788 [https://github.com/jupyterhub/jupyterhub/pull/2788] (@rajat404 [https://github.com/rajat404])

	Service.oauth_no_confirm is added, it is useful for admin-managed services that are considered part of the Hub and shouldn’t need to prompt the user for access #2767 [https://github.com/jupyterhub/jupyterhub/pull/2767] (@minrk [https://github.com/minrk])

	JupyterHub.default_server_name is added to make the default server be a named server with provided name #2735 [https://github.com/jupyterhub/jupyterhub/pull/2735] (@krinsman [https://github.com/krinsman])

	JupyterHub.init_spawners_timeout is introduced to combat slow startups on large JupyterHub deployments #2721 [https://github.com/jupyterhub/jupyterhub/pull/2721] (@minrk [https://github.com/minrk])

	The configuration uids for local authenticators is added to consistently assign users UNIX id’s between installations #2687 [https://github.com/jupyterhub/jupyterhub/pull/2687] (@rgerkin [https://github.com/rgerkin])

	JupyterHub.activity_resolution is introduced with a default value of 30s improving performance by not updating the database with user activity too often #2605 [https://github.com/jupyterhub/jupyterhub/pull/2605] (@minrk [https://github.com/minrk])

	HubAuth [https://jupyterhub.readthedocs.io/en/stable/api/services.auth.html#jupyterhub.services.auth.HubAuth]’s SSL configuration can now be set through environment variables #2588 [https://github.com/jupyterhub/jupyterhub/pull/2588] (@cmd-ntrf [https://github.com/cmd-ntrf])

	Expose spawner.user_options in REST API. #2755 [https://github.com/jupyterhub/jupyterhub/pull/2755] (@danielballan [https://github.com/danielballan])

	add block for scripts included in head #2828 [https://github.com/jupyterhub/jupyterhub/pull/2828] (@bitnik [https://github.com/bitnik])

	Instrument JupyterHub to record events with jupyter_telemetry [Part II] #2698 [https://github.com/jupyterhub/jupyterhub/pull/2698] (@Zsailer [https://github.com/Zsailer])

	Make announcements visible without custom HTML #2570 [https://github.com/jupyterhub/jupyterhub/pull/2570] (@consideRatio [https://github.com/consideRatio])

	Display server version on admin page #2776 [https://github.com/jupyterhub/jupyterhub/pull/2776] (@vilhelmen [https://github.com/vilhelmen])

Fixes

	Bugfix: pam_normalize_username didn’t return username #2876 [https://github.com/jupyterhub/jupyterhub/pull/2876] (@rkdarst [https://github.com/rkdarst])

	Cleanup if spawner stop fails #2849 [https://github.com/jupyterhub/jupyterhub/pull/2849] (@gabber12 [https://github.com/gabber12])

	Fix an issue occurring with the default spawner and internal_ssl enabled #2785 [https://github.com/jupyterhub/jupyterhub/pull/2785] (@rpwagner [https://github.com/rpwagner])

	Fix named servers to not be spawnable unless activated #2772 [https://github.com/jupyterhub/jupyterhub/pull/2772] (@bitnik [https://github.com/bitnik])

	JupyterHub now awaits proxy availability before accepting web requests #2750 [https://github.com/jupyterhub/jupyterhub/pull/2750] (@minrk [https://github.com/minrk])

	Fix a no longer valid assumption that MySQL and MariaDB need to have innodb_file_format and innodb_large_prefix configured #2712 [https://github.com/jupyterhub/jupyterhub/pull/2712] (@chicocvenancio [https://github.com/chicocvenancio])

	Login/Logout button now updates to Login on logout #2705 [https://github.com/jupyterhub/jupyterhub/pull/2705] (@aar0nTw [https://github.com/aar0nTw])

	Fix handling of exceptions within pre_spawn_start hooks #2684 [https://github.com/jupyterhub/jupyterhub/pull/2684] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix an issue where a user could end up spawning a default server instead of a named server as intended #2682 [https://github.com/jupyterhub/jupyterhub/pull/2682] (@rcthomas [https://github.com/rcthomas])

	/hub/admin now redirects to login if unauthenticated #2670 [https://github.com/jupyterhub/jupyterhub/pull/2670] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix spawning of users with names containing characters that needs to be escaped #2648 [https://github.com/jupyterhub/jupyterhub/pull/2648] (@nicorikken [https://github.com/nicorikken])

	Fix TOTAL_USERS prometheus metric #2637 [https://github.com/jupyterhub/jupyterhub/pull/2637] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix RUNNING_SERVERS prometheus metric #2629 [https://github.com/jupyterhub/jupyterhub/pull/2629] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix faulty redirects to 404 that could occur with the use of named servers #2594 [https://github.com/jupyterhub/jupyterhub/pull/2594] (@vilhelmen [https://github.com/vilhelmen])

	JupyterHub API spec is now a valid OpenAPI spec #2590 [https://github.com/jupyterhub/jupyterhub/pull/2590] (@sbrunk [https://github.com/sbrunk])

	Use of --help or --version previously could output unrelated errors #2584 [https://github.com/jupyterhub/jupyterhub/pull/2584] (@minrk [https://github.com/minrk])

	No longer crash on startup in Windows #2560 [https://github.com/jupyterhub/jupyterhub/pull/2560] (@adelcast [https://github.com/adelcast])

	Escape usernames in the frontend #2640 [https://github.com/jupyterhub/jupyterhub/pull/2640] (@nicorikken [https://github.com/nicorikken])

Maintenance

	Optimize CI jobs and default to bionic #2897 [https://github.com/jupyterhub/jupyterhub/pull/2897] (@consideRatio [https://github.com/consideRatio])

	catch connection error for ssl failures #2889 [https://github.com/jupyterhub/jupyterhub/pull/2889] (@minrk [https://github.com/minrk])

	Fix implementation of default server name #2887 [https://github.com/jupyterhub/jupyterhub/pull/2887] (@krinsman [https://github.com/krinsman])

	fixup allow_failures #2880 [https://github.com/jupyterhub/jupyterhub/pull/2880] (@minrk [https://github.com/minrk])

	Pass tests on Python 3.8 #2879 [https://github.com/jupyterhub/jupyterhub/pull/2879] (@minrk [https://github.com/minrk])

	Fixup .travis.yml #2868 [https://github.com/jupyterhub/jupyterhub/pull/2868] (@consideRatio [https://github.com/consideRatio])

	Update README’s badges #2867 [https://github.com/jupyterhub/jupyterhub/pull/2867] (@consideRatio [https://github.com/consideRatio])

	Dockerfile: add build-essential to builder image #2866 [https://github.com/jupyterhub/jupyterhub/pull/2866] (@rkdarst [https://github.com/rkdarst])

	Dockerfile: Copy share/ to the final image #2864 [https://github.com/jupyterhub/jupyterhub/pull/2864] (@rkdarst [https://github.com/rkdarst])

	chore: Dockerfile updates #2853 [https://github.com/jupyterhub/jupyterhub/pull/2853] (@jgwerner [https://github.com/jgwerner])

	simplify Dockerfile #2840 [https://github.com/jupyterhub/jupyterhub/pull/2840] (@minrk [https://github.com/minrk])

	docker: fix onbuild image arg #2839 [https://github.com/jupyterhub/jupyterhub/pull/2839] (@minrk [https://github.com/minrk])

	remove redundant pip package list in docs environment.yml #2838 [https://github.com/jupyterhub/jupyterhub/pull/2838] (@minrk [https://github.com/minrk])

	docs: Update docs to run tests #2812 [https://github.com/jupyterhub/jupyterhub/pull/2812] (@jgwerner [https://github.com/jgwerner])

	remove redundant pip package list in docs environment.yml #2838 [https://github.com/jupyterhub/jupyterhub/pull/2838] (@minrk [https://github.com/minrk])

	updating to pandas docs theme #2820 [https://github.com/jupyterhub/jupyterhub/pull/2820] (@choldgraf [https://github.com/choldgraf])

	Adding institutional faq #2800 [https://github.com/jupyterhub/jupyterhub/pull/2800] (@choldgraf [https://github.com/choldgraf])

	Add inline comment to test #2826 [https://github.com/jupyterhub/jupyterhub/pull/2826] (@consideRatio [https://github.com/consideRatio])

	Raise error on missing specified config #2824 [https://github.com/jupyterhub/jupyterhub/pull/2824] (@consideRatio [https://github.com/consideRatio])

	chore: Refactor Dockerfile #2816 [https://github.com/jupyterhub/jupyterhub/pull/2816] (@jgwerner [https://github.com/jgwerner])

	chore: Update python versions in travis matrix #2811 [https://github.com/jupyterhub/jupyterhub/pull/2811] (@jgwerner [https://github.com/jgwerner])

	chore: Bump package versions used in pre-commit config #2810 [https://github.com/jupyterhub/jupyterhub/pull/2810] (@jgwerner [https://github.com/jgwerner])

	adding docs preview to circleci #2803 [https://github.com/jupyterhub/jupyterhub/pull/2803] (@choldgraf [https://github.com/choldgraf])

	adding institutional faq #2800 [https://github.com/jupyterhub/jupyterhub/pull/2800] (@choldgraf [https://github.com/choldgraf])

	The proxy’s REST API listens on port 8001 #2795 [https://github.com/jupyterhub/jupyterhub/pull/2795] (@bnuhero [https://github.com/bnuhero])

	cull_idle_servers.py: rebind max_age and inactive_limit locally #2794 [https://github.com/jupyterhub/jupyterhub/pull/2794] (@rkdarst [https://github.com/rkdarst])

	Fix deprecation warnings #2789 [https://github.com/jupyterhub/jupyterhub/pull/2789] (@tirkarthi [https://github.com/tirkarthi])

	Log proxy class #2783 [https://github.com/jupyterhub/jupyterhub/pull/2783] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Add docs for fixtures in CONTRIBUTING.md #2782 [https://github.com/jupyterhub/jupyterhub/pull/2782] (@kinow [https://github.com/kinow])

	Fix header project name typo #2775 [https://github.com/jupyterhub/jupyterhub/pull/2775] (@kinow [https://github.com/kinow])

	Remove unused setupegg.py #2774 [https://github.com/jupyterhub/jupyterhub/pull/2774] (@kinow [https://github.com/kinow])

	Log JupyterHub version on startup #2752 [https://github.com/jupyterhub/jupyterhub/pull/2752] (@consideRatio [https://github.com/consideRatio])

	Reduce verbosity for “Failing suspected API request to not-running server” (new) #2751 [https://github.com/jupyterhub/jupyterhub/pull/2751] (@rkdarst [https://github.com/rkdarst])

	Add missing package for json schema doc build #2744 [https://github.com/jupyterhub/jupyterhub/pull/2744] (@willingc [https://github.com/willingc])

	block urllib3 versions with encoding bug #2743 [https://github.com/jupyterhub/jupyterhub/pull/2743] (@minrk [https://github.com/minrk])

	Remove tornado deprecated/unnecessary AsyncIOMainLoop().install() call #2740 [https://github.com/jupyterhub/jupyterhub/pull/2740] (@kinow [https://github.com/kinow])

	Fix deprecated call #2739 [https://github.com/jupyterhub/jupyterhub/pull/2739] (@kinow [https://github.com/kinow])

	Remove duplicate hub and authenticator traitlets from Spawner #2736 [https://github.com/jupyterhub/jupyterhub/pull/2736] (@eslavich [https://github.com/eslavich])

	Update issue template #2725 [https://github.com/jupyterhub/jupyterhub/pull/2725] (@willingc [https://github.com/willingc])

	Use autodoc-traits sphinx extension #2723 [https://github.com/jupyterhub/jupyterhub/pull/2723] (@willingc [https://github.com/willingc])

	Add New Server: change redirecting to relative to home page in js #2714 [https://github.com/jupyterhub/jupyterhub/pull/2714] (@bitnik [https://github.com/bitnik])

	Create a warning when creating a service implicitly from service_tokens #2704 [https://github.com/jupyterhub/jupyterhub/pull/2704] (@katsar0v [https://github.com/katsar0v])

	Fix mistypos #2702 [https://github.com/jupyterhub/jupyterhub/pull/2702] (@rlukin [https://github.com/rlukin])

	Add Jupyter community link #2696 [https://github.com/jupyterhub/jupyterhub/pull/2696] (@mattjshannon [https://github.com/mattjshannon])

	Fix failing travis tests #2695 [https://github.com/jupyterhub/jupyterhub/pull/2695] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Documentation update: hint for using services instead of service tokens. #2679 [https://github.com/jupyterhub/jupyterhub/pull/2679] (@katsar0v [https://github.com/katsar0v])

	Replace header logo: jupyter -> jupyterhub #2672 [https://github.com/jupyterhub/jupyterhub/pull/2672] (@consideRatio [https://github.com/consideRatio])

	Update spawn-form example #2662 [https://github.com/jupyterhub/jupyterhub/pull/2662] (@kinow [https://github.com/kinow])

	Update flask hub authentication services example in doc #2658 [https://github.com/jupyterhub/jupyterhub/pull/2658] (@cmd-ntrf [https://github.com/cmd-ntrf])

	close <div class="container"> tag in home.html #2649 [https://github.com/jupyterhub/jupyterhub/pull/2649] (@bitnik [https://github.com/bitnik])

	Some theme updates; no double NEXT/PREV buttons. #2647 [https://github.com/jupyterhub/jupyterhub/pull/2647] (@Carreau [https://github.com/Carreau])

	fix typos on technical reference documentation #2646 [https://github.com/jupyterhub/jupyterhub/pull/2646] (@ilee38 [https://github.com/ilee38])

	Update links for Hadoop-related subprojects #2645 [https://github.com/jupyterhub/jupyterhub/pull/2645] (@jcrist [https://github.com/jcrist])

	corrected docker network create instructions in dockerfiles README #2632 [https://github.com/jupyterhub/jupyterhub/pull/2632] (@bartolone [https://github.com/bartolone])

	Fixed docs and testing code to use refactored SimpleLocalProcessSpawner #2631 [https://github.com/jupyterhub/jupyterhub/pull/2631] (@danlester [https://github.com/danlester])

	Update the config used for testing #2628 [https://github.com/jupyterhub/jupyterhub/pull/2628] (@jtpio [https://github.com/jtpio])

	Update doc: do not suggest depricated config key #2626 [https://github.com/jupyterhub/jupyterhub/pull/2626] (@lumbric [https://github.com/lumbric])

	Add missing words #2625 [https://github.com/jupyterhub/jupyterhub/pull/2625] (@remram44 [https://github.com/remram44])

	cull-idle: Include a hint on how to add custom culling logic #2613 [https://github.com/jupyterhub/jupyterhub/pull/2613] (@rkdarst [https://github.com/rkdarst])

	Replace existing redirect code by Tornado’s addslash decorator #2609 [https://github.com/jupyterhub/jupyterhub/pull/2609] (@kinow [https://github.com/kinow])

	Hide Stop My Server red button after server stopped. #2577 [https://github.com/jupyterhub/jupyterhub/pull/2577] (@aar0nTw [https://github.com/aar0nTw])

	Update link of changelog #2565 [https://github.com/jupyterhub/jupyterhub/pull/2565] (@iblis17 [https://github.com/iblis17])

	typo #2564 [https://github.com/jupyterhub/jupyterhub/pull/2564] (@julienchastang [https://github.com/julienchastang])

	Update to simplify the language related to spawner options #2558 [https://github.com/jupyterhub/jupyterhub/pull/2558] (@NikeNano [https://github.com/NikeNano])

	Adding the use case of the Elucidata: How Jupyter Notebook is used in… #2548 [https://github.com/jupyterhub/jupyterhub/pull/2548] (@IamViditAgarwal [https://github.com/IamViditAgarwal])

	Dict rewritten as literal #2546 [https://github.com/jupyterhub/jupyterhub/pull/2546] (@remyleone [https://github.com/remyleone])

1.0

1.0.0 [https://github.com/jupyterhub/jupyterhub/compare/0.9.6...1.0.0] 2019-05-03

JupyterHub 1.0 is a major milestone for JupyterHub.
Huge thanks to the many people who have contributed to this release,
whether it was through discussion, testing, documentation, or development.

Major new features

	Support TLS encryption and authentication of all internal communication.
Spawners must implement .move_certs method to make certificates available
to the notebook server if it is not local to the Hub.

	There is now full UI support for managing named servers.
With named servers, each jupyterhub user may have access to more than one named server. For example, a professor may access a server named research and another named teaching.

[image: named servers on the home page]

	Authenticators can now expire and refresh authentication data by implementing
Authenticator.refresh_user(user).
This allows things like OAuth data and access tokens to be refreshed.
When used together with Authenticator.refresh_pre_spawn = True,
auth refresh can be forced prior to Spawn,
allowing the Authenticator to require that authentication data is fresh
immediately before the user’s server is launched.

See also

	Authenticator.refresh_user()

	Spawner.create_certs()

	Spawner.move_certs()

New features

	allow custom spawners, authenticators, and proxies to register themselves via ‘entry points’, enabling more convenient configuration such as:

c.JupyterHub.authenticator_class = 'github'
c.JupyterHub.spawner_class = 'docker'
c.JupyterHub.proxy_class = 'traefik_etcd'

	Spawners are passed the tornado Handler object that requested their spawn (as self.handler),
so they can do things like make decisions based on query arguments in the request.

	SimpleSpawner and DummyAuthenticator, which are useful for testing, have been merged into JupyterHub itself:

For testing purposes only. Should not be used in production.
c.JupyterHub.authenticator_class = 'dummy'
c.JupyterHub.spawner_class = 'simple'

These classes are not appropriate for production use. Only testing.

	Add health check endpoint at /hub/health

	Several prometheus metrics have been added (thanks to Outreachy [https://www.outreachy.org/] applicants!)

	A new API for registering user activity.
To prepare for the addition of alternate proxy implementations [https://github.com/jupyterhub/traefik-proxy],
responsibility for tracking activity is taken away from the proxy
and moved to the notebook server (which already has activity tracking features).
Activity is now tracked by pushing it to the Hub from user servers instead of polling the
proxy API.

	Dynamic options_form callables may now return an empty string
which will result in no options form being rendered.

	Spawner.user_options is persisted to the database to be re-used,
so that a server spawned once via the form can be re-spawned via the API
with the same options.

	Added c.PAMAuthenticator.pam_normalize_username option for round-tripping
usernames through PAM to retrieve the normalized form.

	Added c.JupyterHub.named_server_limit_per_user configuration to limit
the number of named servers each user can have.
The default is 0, for no limit.

	API requests to HubAuthenticated services (e.g. single-user servers)
may pass a token in the Authorization header,
matching authentication with the Hub API itself.

	Added Authenticator.is_admin(handler, authentication) method
and Authenticator.admin_groups configuration for automatically
determining that a member of a group should be considered an admin.

	New c.Authenticator.post_auth_hook configuration
that can be any callable of the form async def hook(authenticator, handler, authentication=None):.
This hook may transform the return value of Authenticator.authenticate()
and return a new authentication dictionary,
e.g. specifying admin privileges, group membership,
or custom allowed/blocked logic.
This hook is called after existing normalization and allowed-username checking.

	Spawner.options_from_form may now be async

	Added JupyterHub.shutdown_on_logout option to trigger shutdown of a user’s
servers when they log out.

	When Spawner.start raises an Exception,
a message can be passed on to the user if the exception has a .jupyterhub_message attribute.

Changes

	Authentication methods such as check_whitelist should now take an additional
authentication argument
that will be a dictionary (default: None) of authentication data,
as returned by Authenticator.authenticate():

def check_whitelist(self, username, authentication=None):
 ...

authentication should have a default value of None
for backward-compatibility with jupyterhub < 1.0.

	Prometheus metrics page is now authenticated.
Any authenticated user may see the prometheus metrics.
To disable prometheus authentication,
set JupyterHub.authenticate_prometheus = False.

	Visits to /user/:name no longer trigger an implicit launch of the user’s server.
Instead, a page is shown indicating that the server is not running
with a link to request the spawn.

	API requests to /user/:name for a not-running server will have status 503 instead of 404.

	OAuth includes a confirmation page when attempting to visit another user’s server,
so that users can choose to cancel authentication with the single-user server.
Confirmation is still skipped when accessing your own server.

Fixed

	Various fixes to improve Windows compatibility
(default Authenticator and Spawner still do not support Windows, but other Spawners may)

	Fixed compatibility with Oracle db

	Fewer redirects following a visit to the default / url

	Error when progress is requested before progress is ready

	Error when API requests are made to a not-running server without authentication

	Avoid logging database password on connect if password is specified in JupyterHub.db_url.

Development changes

There have been several changes to the development process that shouldn’t
generally affect users of JupyterHub, but may affect contributors.
In general, see CONTRIBUTING.md for contribution info or ask if you have questions.

	JupyterHub has adopted black as a code autoformatter and pre-commit
as a tool for automatically running code formatting on commit.
This is meant to make it easier to contribute to JupyterHub,
so let us know if it’s having the opposite effect.

	JupyterHub has switched its test suite to using pytest-asyncio from pytest-tornado.

	OAuth is now implemented internally using oauthlib instead of python-oauth2. This should have no effect on behavior.

0.9

0.9.6 [https://github.com/jupyterhub/jupyterhub/compare/0.9.4...0.9.6] 2019-04-01

JupyterHub 0.9.6 is a security release.

	Fixes an Open Redirect vulnerability (CVE-2019-10255).

JupyterHub 0.9.5 included a partial fix for this issue.

0.9.4 [https://github.com/jupyterhub/jupyterhub/compare/0.9.3...0.9.4] 2018-09-24

JupyterHub 0.9.4 is a small bugfix release.

	Fixes an issue that required all running user servers to be restarted
when performing an upgrade from 0.8 to 0.9.

	Fixes content-type for API endpoints back to application/json.
It was text/html in 0.9.0-0.9.3.

0.9.3 [https://github.com/jupyterhub/jupyterhub/compare/0.9.2...0.9.3] 2018-09-12

JupyterHub 0.9.3 contains small bugfixes and improvements

	Fix token page and model handling of expires_at.
This field was missing from the REST API model for tokens
and could cause the token page to not render

	Add keep-alive to progress event stream to avoid proxies dropping
the connection due to inactivity

	Documentation and example improvements

	Disable quit button when using notebook 5.6

	Prototype new feature (may change prior to 1.0):
pass requesting Handler to Spawners during start,
accessible as self.handler

0.9.2 [https://github.com/jupyterhub/jupyterhub/compare/0.9.1...0.9.2] 2018-08-10

JupyterHub 0.9.2 contains small bugfixes and improvements.

	Documentation and example improvements

	Add Spawner.consecutive_failure_limit config for aborting the Hub if too many spawns fail in a row.

	Fix for handling SIGTERM when run with asyncio (tornado 5)

	Windows compatibility fixes

0.9.1 [https://github.com/jupyterhub/jupyterhub/compare/0.9.0...0.9.1] 2018-07-04

JupyterHub 0.9.1 contains a number of small bugfixes on top of 0.9.

	Use a PID file for the proxy to decrease the likelihood that a leftover proxy process will prevent JupyterHub from restarting

	c.LocalProcessSpawner.shell_cmd is now configurable

	API requests to stopped servers (requests to the hub for /user/:name/api/...) fail with 404 rather than triggering a restart of the server

	Compatibility fix for notebook 5.6.0 which will introduce further
security checks for local connections

	Managed services always use localhost to talk to the Hub if the Hub listening on all interfaces

	When using a URL prefix, the Hub route will be JupyterHub.base_url instead of unconditionally /

	additional fixes and improvements

0.9.0 [https://github.com/jupyterhub/jupyterhub/compare/0.8.1...0.9.0] 2018-06-15

JupyterHub 0.9 is a major upgrade of JupyterHub.
There are several changes to the database schema,
so make sure to backup your database and run:

jupyterhub upgrade-db

after upgrading jupyterhub.

The biggest change for 0.9 is the switch to asyncio coroutines everywhere
instead of tornado coroutines. Custom Spawners and Authenticators are still
free to use tornado coroutines for async methods, as they will continue to
work. As part of this upgrade, JupyterHub 0.9 drops support for Python < 3.5
and tornado < 5.0.

Changed

	Require Python >= 3.5

	Require tornado >= 5.0

	Use asyncio coroutines throughout

	Set status 409 for conflicting actions instead of 400,
e.g. creating users or groups that already exist.

	timestamps in REST API continue to be UTC, but now include ‘Z’ suffix
to identify them as such.

	REST API User model always includes servers dict,
not just when named servers are enabled.

	server info is no longer available to oauth identification endpoints,
only user info and group membership.

	User.last_activity may be None if a user has not been seen,
rather than starting with the user creation time
which is now separately stored as User.created.

	static resources are now found in $PREFIX/share/jupyterhub instead of share/jupyter/hub for improved consistency.

	Deprecate .extra_log_file config. Use pipe redirection instead:

jupyterhub &>> /var/log/jupyterhub.log

	Add JupyterHub.bind_url config for setting the full bind URL of the proxy.
Sets ip, port, base_url all at once.

	Add JupyterHub.hub_bind_url for setting the full host+port of the Hub.
hub_bind_url supports unix domain sockets, e.g.
unix+http://%2Fsrv%2Fjupyterhub.sock

	Deprecate JupyterHub.hub_connect_port config in favor of JupyterHub.hub_connect_url. hub_connect_ip is not deprecated
and can still be used in the common case where only the ip address of the hub differs from the bind ip.

Added

	Spawners can define a .progress method which should be an async generator.
The generator should yield events of the form:

{
 "message": "some-state-message",
 "progress": 50,
}

These messages will be shown with a progress bar on the spawn-pending page.
The async_generator package can be used to make async generators
compatible with Python 3.5.

	track activity of individual API tokens

	new REST API for managing API tokens at /hub/api/user/tokens[/token-id]

	allow viewing/revoking tokens via token page

	User creation time is available in the REST API as User.created

	Server start time is stored as Server.started

	Spawner.start may return a URL for connecting to a notebook instead of (ip, port). This enables Spawners to launch servers that setup their own HTTPS.

	Optimize database performance by disabling sqlalchemy expire_on_commit by default.

	Add python -m jupyterhub.dbutil shell entrypoint for quickly
launching an IPython session connected to your JupyterHub database.

	Include User.auth_state in user model on single-user REST endpoints for admins only.

	Include Server.state in server model on REST endpoints for admins only.

	Add Authenticator.blacklist for blocking users instead of allowing.

	Pass c.JupyterHub.tornado_settings['cookie_options'] down to Spawners
so that cookie options (e.g. expires_days) can be set globally for the whole application.

	SIGINFO (ctrl-t) handler showing the current status of all running threads,
coroutines, and CPU/memory/FD consumption.

	Add async Spawner.get_options_form alternative to .options_form, so it can be a coroutine.

	Add JupyterHub.redirect_to_server config to govern whether
users should be sent to their server on login or the JupyterHub home page.

	html page templates can be more easily customized and extended.

	Allow registering external OAuth clients for using the Hub as an OAuth provider.

	Add basic prometheus metrics at /hub/metrics endpoint.

	Add session-id cookie, enabling immediate revocation of login tokens.

	Authenticators may specify that users are admins by specifying the admin key when return the user model as a dict.

	Added “Start All” button to admin page for launching all user servers at once.

	Services have an info field which is a dictionary.
This is accessible via the REST API.

	JupyterHub.extra_handlers allows defining additional tornado RequestHandlers attached to the Hub.

	API tokens may now expire.
Expiry is available in the REST model as expires_at,
and settable when creating API tokens by specifying expires_in.

Fixed

	Remove green from theme to improve accessibility

	Fix error when proxy deletion fails due to route already being deleted

	clear ?redirects from URL on successful launch

	disable send2trash by default, which is rarely desirable for jupyterhub

	Put PAM calls in a thread so they don’t block the main application
in cases where PAM is slow (e.g. LDAP).

	Remove implicit spawn from login handler,
instead relying on subsequent request for /user/:name to trigger spawn.

	Fixed several inconsistencies for initial redirects,
depending on whether server is running or not and whether the user is logged in or not.

	Admin requests for /user/:name (when admin-access is enabled) launch the right server if it’s not running instead of redirecting to their own.

	Major performance improvement starting up JupyterHub with many users,
especially when most are inactive.

	Various fixes in race conditions and performance improvements with the default proxy.

	Fixes for CORS headers

	Stop setting .form-control on spawner form inputs unconditionally.

	Better recovery from database errors and database connection issues
without having to restart the Hub.

	Fix handling of ~ character in usernames.

	Fix jupyterhub startup when getpass.getuser() would fail,
e.g. due to missing entry in passwd file in containers.

0.8

0.8.1 [https://github.com/jupyterhub/jupyterhub/compare/0.8.0...0.8.1] 2017-11-07

JupyterHub 0.8.1 is a collection of bugfixes and small improvements on 0.8.

Added

	Run tornado with AsyncIO by default

	Add jupyterhub --upgrade-db flag for automatically upgrading the database as part of startup.
This is useful for cases where manually running jupyterhub upgrade-db
as a separate step is unwieldy.

	Avoid creating backups of the database when no changes are to be made by
jupyterhub upgrade-db.

Fixed

	Add some further validation to usernames - / is not allowed in usernames.

	Fix empty logout page when using auto_login

	Fix autofill of username field in default login form.

	Fix listing of users on the admin page who have not yet started their server.

	Fix ever-growing traceback when re-raising Exceptions from spawn failures.

	Remove use of deprecated bower for javascript client dependencies.

0.8.0 [https://github.com/jupyterhub/jupyterhub/compare/0.7.2...0.8.0] 2017-10-03

JupyterHub 0.8 is a big release!

Perhaps the biggest change is the use of OAuth to negotiate authentication
between the Hub and single-user services.
Due to this change, it is important that the single-user server
and Hub are both running the same version of JupyterHub.
If you are using containers (e.g. via DockerSpawner or KubeSpawner),
this means upgrading jupyterhub in your user images at the same time as the Hub.
In most cases, a

pip install jupyterhub==version

in your Dockerfile is sufficient.

Added

	JupyterHub now defined a Proxy API for custom
proxy implementations other than the default.
The defaults are unchanged,
but configuration of the proxy is now done on the ConfigurableHTTPProxy class instead of the top-level JupyterHub.
TODO: docs for writing a custom proxy.

	Single-user servers and services
(anything that uses HubAuth)
can now accept token-authenticated requests via the Authentication header.

	Authenticators can now store state in the Hub’s database.
To do so, the authenticate method should return a dict of the form

{
 'username': 'name',
 'state': {}
}

This data will be encrypted and requires JUPYTERHUB_CRYPT_KEY environment variable to be set
and the Authenticator.enable_auth_state flag to be True.
If these are not set, auth_state returned by the Authenticator will not be stored.

	There is preliminary support for multiple (named) servers per user in the REST API.
Named servers can be created via API requests, but there is currently no UI for managing them.

	Add LocalProcessSpawner.popen_kwargs and LocalProcessSpawner.shell_cmd
for customizing how user server processes are launched.

	Add Authenticator.auto_login flag for skipping the “Login with…” page explicitly.

	Add JupyterHub.hub_connect_ip configuration
for the ip that should be used when connecting to the Hub.
This is promoting (and deprecating) DockerSpawner.hub_ip_connect
for use by all Spawners.

	Add Spawner.pre_spawn_hook(spawner) hook for customizing
pre-spawn events.

	Add JupyterHub.active_server_limit and JupyterHub.concurrent_spawn_limit
for limiting the total number of running user servers and the number of pending spawns, respectively.

Changed

	more arguments to spawners are now passed via environment variables (.get_env())
rather than CLI arguments (.get_args())

	internally generated tokens no longer get extra hash rounds,
significantly speeding up authentication.
The hash rounds were deemed unnecessary because the tokens were already
generated with high entropy.

	JUPYTERHUB_API_TOKEN env is available at all times,
rather than being removed during single-user start.
The token is now accessible to kernel processes,
enabling user kernels to make authenticated API requests to Hub-authenticated services.

	Cookie secrets should be 32B hex instead of large base64 secrets.

	pycurl is used by default, if available.

Fixed

So many things fixed!

	Collisions are checked when users are renamed

	Fix bug where OAuth authenticators could not logout users
due to being redirected right back through the login process.

	If there are errors loading your config files,
JupyterHub will refuse to start with an informative error.
Previously, the bad config would be ignored and JupyterHub would launch with default configuration.

	Raise 403 error on unauthorized user rather than redirect to login,
which could cause redirect loop.

	Set httponly on cookies because it’s prudent.

	Improve support for MySQL as the database backend

	Many race conditions and performance problems under heavy load have been fixed.

	Fix alembic tagging of database schema versions.

Removed

	End support for Python 3.3

0.7

0.7.2 [https://github.com/jupyterhub/jupyterhub/compare/0.7.1...0.7.2] - 2017-01-09

Added

	Support service environment variables and defaults in jupyterhub-singleuser
for easier deployment of notebook servers as a Service.

	Add --group parameter for deploying jupyterhub-singleuser as a Service with group authentication.

	Include URL parameters when redirecting through /user-redirect/

Fixed

	Fix group authentication for HubAuthenticated services

0.7.1 [https://github.com/jupyterhub/jupyterhub/compare/0.7.0...0.7.1] - 2017-01-02

Added

	Spawner.will_resume for signaling that a single-user server is paused instead of stopped.
This is needed for cases like DockerSpawner.remove_containers = False,
where the first API token is re-used for subsequent spawns.

	Warning on startup about single-character usernames,
caused by common set('string') typo in config.

Fixed

	Removed spurious warning about empty next_url, which is AOK.

0.7.0 [https://github.com/jupyterhub/jupyterhub/compare/0.6.1...0.7.0] - 2016-12-2

Added

	Implement Services API #705 [https://github.com/jupyterhub/jupyterhub/pull/705]

	Add /api/ and /api/info endpoints #675 [https://github.com/jupyterhub/jupyterhub/pull/675]

	Add documentation for JupyterLab, pySpark configuration, troubleshooting,
and more.

	Add logging of error if adding users already in database. #689 [https://github.com/jupyterhub/jupyterhub/pull/689]

	Add HubAuth class for authenticating with JupyterHub. This class can
be used by any application, even outside tornado.

	Add user groups.

	Add /hub/user-redirect/... URL for redirecting users to a file on their own server.

Changed

	Always install with setuptools but not eggs (effectively require
pip install .) #722 [https://github.com/jupyterhub/jupyterhub/pull/722]

	Updated formatting of changelog. #711 [https://github.com/jupyterhub/jupyterhub/pull/711]

	Single-user server is provided by JupyterHub package, so single-user servers depend on JupyterHub now.

Fixed

	Fix docker repository location #719 [https://github.com/jupyterhub/jupyterhub/pull/719]

	Fix swagger spec conformance and timestamp type in API spec

	Various redirect-loop-causing bugs have been fixed.

Removed

	Deprecate --no-ssl command line option. It has no meaning and warns if
used. #789 [https://github.com/jupyterhub/jupyterhub/pull/789]

	Deprecate %U username substitution in favor of {username}. #748 [https://github.com/jupyterhub/jupyterhub/pull/748]

	Removed deprecated SwarmSpawner link. #699 [https://github.com/jupyterhub/jupyterhub/pull/699]

0.6

0.6.1 [https://github.com/jupyterhub/jupyterhub/compare/0.6.0...0.6.1] - 2016-05-04

Bugfixes on 0.6:

	statsd is an optional dependency, only needed if in use

	Notice more quickly when servers have crashed

	Better error pages for proxy errors

	Add Stop All button to admin panel for stopping all servers at once

0.6.0 [https://github.com/jupyterhub/jupyterhub/compare/0.5.0...0.6.0] - 2016-04-25

	JupyterHub has moved to a new jupyterhub namespace on GitHub and Docker. What was jupyter/jupyterhub is now jupyterhub/jupyterhub, etc.

	jupyterhub/jupyterhub image on DockerHub no longer loads the jupyterhub_config.py in an ONBUILD step. A new jupyterhub/jupyterhub-onbuild image does this

	Add statsd support, via c.JupyterHub.statsd_{host,port,prefix}

	Update to traitlets 4.1 @default, @observe APIs for traits

	Allow disabling PAM sessions via c.PAMAuthenticator.open_sessions = False. This may be needed on SELinux-enabled systems, where our PAM session logic often does not work properly

	Add Spawner.environment configurable, for defining extra environment variables to load for single-user servers

	JupyterHub API tokens can be pregenerated and loaded via JupyterHub.api_tokens, a dict of token: username.

	JupyterHub API tokens can be requested via the REST API, with a POST request to /api/authorizations/token.
This can only be used if the Authenticator has a username and password.

	Various fixes for user URLs and redirects

0.5 [https://github.com/jupyterhub/jupyterhub/compare/0.4.1...0.5.0] - 2016-03-07

	Single-user server must be run with Jupyter Notebook ≥ 4.0

	Require --no-ssl confirmation to allow the Hub to be run without SSL (e.g. behind SSL termination in nginx)

	Add lengths to text fields for MySQL support

	Add Spawner.disable_user_config for preventing user-owned configuration from modifying single-user servers.

	Fixes for MySQL support.

	Add ability to run each user’s server on its own subdomain. Requires wildcard DNS and wildcard SSL to be feasible. Enable subdomains by setting JupyterHub.subdomain_host = 'https://jupyterhub.domain.tld[:port]'.

	Use 127.0.0.1 for local communication instead of localhost, avoiding issues with DNS on some systems.

	Fix race that could add users to proxy prematurely if spawning is slow.

0.4

0.4.1 [https://github.com/jupyterhub/jupyterhub/compare/0.4.0...0.4.1] - 2016-02-03

Fix removal of /login page in 0.4.0, breaking some OAuth providers.

0.4.0 [https://github.com/jupyterhub/jupyterhub/compare/0.3.0...0.4.0] - 2016-02-01

	Add Spawner.user_options_form for specifying an HTML form to present to users,
allowing users to influence the spawning of their own servers.

	Add Authenticator.pre_spawn_start and Authenticator.post_spawn_stop hooks,
so that Authenticators can do setup or teardown (e.g. passing credentials to Spawner,
mounting data sources, etc.).
These methods are typically used with custom Authenticator+Spawner pairs.

	0.4 will be the last JupyterHub release where single-user servers running IPython 3 is supported instead of Notebook ≥ 4.0.

0.3 [https://github.com/jupyterhub/jupyterhub/compare/0.2.0...0.3.0] - 2015-11-04

	No longer make the user starting the Hub an admin

	start PAM sessions on login

	hooks for Authenticators to fire before spawners start and after they stop,
allowing deeper interaction between Spawner/Authenticator pairs.

	login redirect fixes

0.2 [https://github.com/jupyterhub/jupyterhub/compare/0.1.0...0.2.0] - 2015-07-12

	Based on standalone traitlets instead of IPython.utils.traitlets

	multiple users in admin panel

	Fixes for usernames that require escaping

0.1 - 2015-03-07

First preview release

 JupyterHub API

JupyterHub API

	Release

	2.0.0

	Date

	Dec 01, 2021

JupyterHub also provides a REST API for administration of the Hub and users.
The documentation on Using JupyterHub’s REST API provides
information on:

	what you can do with the API

	creating an API token

	adding API tokens to the config files

	making an API request programmatically using the requests library

	learning more about JupyterHub’s API

JupyterHub API Reference:

	Application configuration
	Module: jupyterhub.app
	JupyterHub

	Authenticators
	Module: jupyterhub.auth
	Authenticator

	LocalAuthenticator

	PAMAuthenticator

	DummyAuthenticator

	Spawners
	Module: jupyterhub.spawner
	Spawner

	LocalProcessSpawner

	Proxies
	Module: jupyterhub.proxy
	Proxy

	ConfigurableHTTPProxy

	Users
	Module: jupyterhub.user
	UserDict

	User

	Services
	Module: jupyterhub.services.service
	Service

	Services Authentication
	Module: jupyterhub.services.auth
	HubAuth

	HubOAuth

	HubAuthenticated

	HubOAuthenticated

	HubOAuthCallbackHandler

 Application configuration

Application configuration

Module: jupyterhub.app

The multi-user notebook application

JupyterHub

	
class jupyterhub.app.JupyterHub(**kwargs)

	An Application for starting a Multi-User Jupyter Notebook server.

	
active_server_limit c.JupyterHub.active_server_limit = Int(0)

	Maximum number of concurrent servers that can be active at a time.

Setting this can limit the total resources your users can consume.

An active server is any server that’s not fully stopped.
It is considered active from the time it has been requested
until the time that it has completely stopped.

If this many user servers are active, users will not be able to
launch new servers until a server is shutdown.
Spawn requests will be rejected with a 429 error asking them to try again.

If set to 0, no limit is enforced.

	
active_user_window c.JupyterHub.active_user_window = Int(1800)

	Duration (in seconds) to determine the number of active users.

	
activity_resolution c.JupyterHub.activity_resolution = Int(30)

	Resolution (in seconds) for updating activity

If activity is registered that is less than activity_resolution seconds
more recent than the current value,
the new value will be ignored.

This avoids too many writes to the Hub database.

	
admin_access c.JupyterHub.admin_access = Bool(False)

	Grant admin users permission to access single-user servers.

Users should be properly informed if this is enabled.

	
admin_users c.JupyterHub.admin_users = Set()

	DEPRECATED since version 0.7.2, use Authenticator.admin_users instead.

	
allow_named_servers c.JupyterHub.allow_named_servers = Bool(False)

	Allow named single-user servers per user

	
answer_yes c.JupyterHub.answer_yes = Bool(False)

	Answer yes to any questions (e.g. confirm overwrite)

	
api_page_default_limit c.JupyterHub.api_page_default_limit = Int(50)

	The default amount of records returned by a paginated endpoint

	
api_page_max_limit c.JupyterHub.api_page_max_limit = Int(200)

	The maximum amount of records that can be returned at once

	
api_tokens c.JupyterHub.api_tokens = Dict()

	PENDING DEPRECATION: consider using services

Dict of token:username to be loaded into the database.

Allows ahead-of-time generation of API tokens for use by externally managed services,
which authenticate as JupyterHub users.

Consider using services for general services that talk to the JupyterHub API.

	
authenticate_prometheus c.JupyterHub.authenticate_prometheus = Bool(True)

	Authentication for prometheus metrics

	
authenticator_class c.JupyterHub.authenticator_class = EntryPointType(<class 'jupyterhub.auth.PAMAuthenticator'>)

	Class for authenticating users.

This should be a subclass of jupyterhub.auth.Authenticator

with an authenticate() method that:

	is a coroutine (asyncio or tornado)

	returns username on success, None on failure

	takes two arguments: (handler, data),
where handler is the calling web.RequestHandler,
and data is the POST form data from the login page.

Changed in version 1.0: authenticators may be registered via entry points,
e.g. c.JupyterHub.authenticator_class = 'pam'

	Currently installed:
	
	default: jupyterhub.auth.PAMAuthenticator

	dummy: jupyterhub.auth.DummyAuthenticator

	null: jupyterhub.auth.NullAuthenticator

	pam: jupyterhub.auth.PAMAuthenticator

	
base_url c.JupyterHub.base_url = URLPrefix('/')

	The base URL of the entire application.

Add this to the beginning of all JupyterHub URLs.
Use base_url to run JupyterHub within an existing website.

	
bind_url c.JupyterHub.bind_url = Unicode('http://:8000')

	The public facing URL of the whole JupyterHub application.

This is the address on which the proxy will bind.
Sets protocol, ip, base_url

	
cleanup_proxy c.JupyterHub.cleanup_proxy = Bool(True)

	Whether to shutdown the proxy when the Hub shuts down.

Disable if you want to be able to teardown the Hub while leaving the proxy running.

Only valid if the proxy was starting by the Hub process.

If both this and cleanup_servers are False, sending SIGINT to the Hub will
only shutdown the Hub, leaving everything else running.

The Hub should be able to resume from database state.

	
cleanup_servers c.JupyterHub.cleanup_servers = Bool(True)

	Whether to shutdown single-user servers when the Hub shuts down.

Disable if you want to be able to teardown the Hub while leaving the single-user servers running.

If both this and cleanup_proxy are False, sending SIGINT to the Hub will
only shutdown the Hub, leaving everything else running.

The Hub should be able to resume from database state.

	
concurrent_spawn_limit c.JupyterHub.concurrent_spawn_limit = Int(100)

	Maximum number of concurrent users that can be spawning at a time.

Spawning lots of servers at the same time can cause performance
problems for the Hub or the underlying spawning system.
Set this limit to prevent bursts of logins from attempting
to spawn too many servers at the same time.

This does not limit the number of total running servers.
See active_server_limit for that.

If more than this many users attempt to spawn at a time, their
requests will be rejected with a 429 error asking them to try again.
Users will have to wait for some of the spawning services
to finish starting before they can start their own.

If set to 0, no limit is enforced.

	
config_file c.JupyterHub.config_file = Unicode('jupyterhub_config.py')

	The config file to load

	
confirm_no_ssl c.JupyterHub.confirm_no_ssl = Bool(False)

	DEPRECATED: does nothing

	
cookie_max_age_days c.JupyterHub.cookie_max_age_days = Float(14)

	Number of days for a login cookie to be valid.
Default is two weeks.

	
cookie_secret c.JupyterHub.cookie_secret = Union()

	The cookie secret to use to encrypt cookies.

Loaded from the JPY_COOKIE_SECRET env variable by default.

Should be exactly 256 bits (32 bytes).

	
cookie_secret_file c.JupyterHub.cookie_secret_file = Unicode('jupyterhub_cookie_secret')

	File in which to store the cookie secret.

	
data_files_path c.JupyterHub.data_files_path = Unicode('/home/docs/checkouts/readthedocs.org/user_builds/jupyterhub/checkouts/2.0.0/share/jupyterhub')

	The location of jupyterhub data files (e.g. /usr/local/share/jupyterhub)

	
db_kwargs c.JupyterHub.db_kwargs = Dict()

	Include any kwargs to pass to the database connection.
See sqlalchemy.create_engine for details.

	
db_url c.JupyterHub.db_url = Unicode('sqlite:///jupyterhub.sqlite')

	url for the database. e.g. sqlite:///jupyterhub.sqlite

	
debug_db c.JupyterHub.debug_db = Bool(False)

	log all database transactions. This has A LOT of output

	
debug_proxy c.JupyterHub.debug_proxy = Bool(False)

	DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.debug

	
default_server_name c.JupyterHub.default_server_name = Unicode('')

	If named servers are enabled, default name of server to spawn or open, e.g. by user-redirect.

	
default_url c.JupyterHub.default_url = Union()

	The default URL for users when they arrive (e.g. when user directs to “/”)

By default, redirects users to their own server.

Can be a Unicode string (e.g. ‘/hub/home’) or a callable based on the handler object:

def default_url_fn(handler):
 user = handler.current_user
 if user and user.admin:
 return '/hub/admin'
 return '/hub/home'

c.JupyterHub.default_url = default_url_fn

	
external_ssl_authorities c.JupyterHub.external_ssl_authorities = Dict()

	Dict authority:dict(files). Specify the key, cert, and/or
ca file for an authority. This is useful for externally managed
proxies that wish to use internal_ssl.

The files dict has this format (you must specify at least a cert):

{
 'key': '/path/to/key.key',
 'cert': '/path/to/cert.crt',
 'ca': '/path/to/ca.crt'
}

The authorities you can override: ‘hub-ca’, ‘notebooks-ca’,
‘proxy-api-ca’, ‘proxy-client-ca’, and ‘services-ca’.

Use with internal_ssl

	
extra_handlers c.JupyterHub.extra_handlers = List()

	Register extra tornado Handlers for jupyterhub.

Should be of the form ("<regex>", Handler)

The Hub prefix will be added, so /my-page will be served at /hub/my-page.

	
extra_log_file c.JupyterHub.extra_log_file = Unicode('')

	DEPRECATED: use output redirection instead, e.g.

jupyterhub &>> /var/log/jupyterhub.log

	
extra_log_handlers c.JupyterHub.extra_log_handlers = List()

	Extra log handlers to set on JupyterHub logger

	
generate_certs c.JupyterHub.generate_certs = Bool(False)

	Generate certs used for internal ssl

	
generate_config c.JupyterHub.generate_config = Bool(False)

	Generate default config file

	
hub_bind_url c.JupyterHub.hub_bind_url = Unicode('')

	The URL on which the Hub will listen.
This is a private URL for internal communication.
Typically set in combination with hub_connect_url.
If a unix socket, hub_connect_url must also be set.

For example:

“http://127.0.0.1:8081”
“unix+http://%2Fsrv%2Fjupyterhub%2Fjupyterhub.sock”

New in version 0.9.

	
hub_connect_ip c.JupyterHub.hub_connect_ip = Unicode('')

	The ip or hostname for proxies and spawners to use
for connecting to the Hub.

Use when the bind address (hub_ip) is 0.0.0.0, :: or otherwise different
from the connect address.

Default: when hub_ip is 0.0.0.0 or ::, use socket.gethostname(), otherwise use hub_ip.

Note: Some spawners or proxy implementations might not support hostnames. Check your
spawner or proxy documentation to see if they have extra requirements.

New in version 0.8.

	
hub_connect_port c.JupyterHub.hub_connect_port = Int(0)

	DEPRECATED

Use hub_connect_url

New in version 0.8.

Deprecated since version 0.9: Use hub_connect_url

	
hub_connect_url c.JupyterHub.hub_connect_url = Unicode('')

	The URL for connecting to the Hub.
Spawners, services, and the proxy will use this URL
to talk to the Hub.

Only needs to be specified if the default hub URL is not
connectable (e.g. using a unix+http:// bind url).

See also

JupyterHub.hub_connect_ip
JupyterHub.hub_bind_url

New in version 0.9.

	
hub_ip c.JupyterHub.hub_ip = Unicode('127.0.0.1')

	The ip address for the Hub process to bind to.

By default, the hub listens on localhost only. This address must be accessible from
the proxy and user servers. You may need to set this to a public ip or ‘’ for all
interfaces if the proxy or user servers are in containers or on a different host.

See hub_connect_ip for cases where the bind and connect address should differ,
or hub_bind_url for setting the full bind URL.

	
hub_port c.JupyterHub.hub_port = Int(8081)

	The internal port for the Hub process.

This is the internal port of the hub itself. It should never be accessed directly.
See JupyterHub.port for the public port to use when accessing jupyterhub.
It is rare that this port should be set except in cases of port conflict.

See also hub_ip for the ip and hub_bind_url for setting the full bind URL.

	
hub_routespec c.JupyterHub.hub_routespec = Unicode('/')

	The routing prefix for the Hub itself.

Override to send only a subset of traffic to the Hub.
Default is to use the Hub as the default route for all requests.

This is necessary for normal jupyterhub operation,
as the Hub must receive requests for e.g. /user/:name
when the user’s server is not running.

However, some deployments using only the JupyterHub API
may want to handle these events themselves,
in which case they can register their own default target with the proxy
and set e.g. hub_routespec = /hub/ to serve only the hub’s own pages, or even /hub/api/ for api-only operation.

Note: hub_routespec must include the base_url, if any.

New in version 1.4.

	
implicit_spawn_seconds c.JupyterHub.implicit_spawn_seconds = Float(0)

	Trigger implicit spawns after this many seconds.

When a user visits a URL for a server that’s not running,
they are shown a page indicating that the requested server
is not running with a button to spawn the server.

Setting this to a positive value will redirect the user
after this many seconds, effectively clicking this button
automatically for the users,
automatically beginning the spawn process.

Warning: this can result in errors and surprising behavior
when sharing access URLs to actual servers,
since the wrong server is likely to be started.

	
init_spawners_timeout c.JupyterHub.init_spawners_timeout = Int(10)

	Timeout (in seconds) to wait for spawners to initialize

Checking if spawners are healthy can take a long time
if many spawners are active at hub start time.

If it takes longer than this timeout to check,
init_spawner will be left to complete in the background
and the http server is allowed to start.

A timeout of -1 means wait forever,
which can mean a slow startup of the Hub
but ensures that the Hub is fully consistent by the time it starts responding to requests.
This matches the behavior of jupyterhub 1.0.

	
internal_certs_location c.JupyterHub.internal_certs_location = Unicode('internal-ssl')

	The location to store certificates automatically created by
JupyterHub.

Use with internal_ssl

	
internal_ssl c.JupyterHub.internal_ssl = Bool(False)

	Enable SSL for all internal communication

This enables end-to-end encryption between all JupyterHub components.
JupyterHub will automatically create the necessary certificate
authority and sign notebook certificates as they’re created.

	
ip c.JupyterHub.ip = Unicode('')

	The public facing ip of the whole JupyterHub application
(specifically referred to as the proxy).

This is the address on which the proxy will listen. The default is to
listen on all interfaces. This is the only address through which JupyterHub
should be accessed by users.

	
jinja_environment_options c.JupyterHub.jinja_environment_options = Dict()

	Supply extra arguments that will be passed to Jinja environment.

	
last_activity_interval c.JupyterHub.last_activity_interval = Int(300)

	Interval (in seconds) at which to update last-activity timestamps.

	
load_groups c.JupyterHub.load_groups = Dict()

	Dict of ‘group’: [‘usernames’] to load at startup.

This strictly adds groups and users to groups.

Loading one set of groups, then starting JupyterHub again with a different
set will not remove users or groups from previous launches.
That must be done through the API.

	
load_roles c.JupyterHub.load_roles = List()

	List of predefined role dictionaries to load at startup.

For instance:

load_roles = [
 {
 'name': 'teacher',
 'description': 'Access to users' information and group membership',
 'scopes': ['users', 'groups'],
 'users': ['cyclops', 'gandalf'],
 'services': [],
 'groups': []
 }
]

All keys apart from ‘name’ are optional.
See all the available scopes in the JupyterHub REST API documentation.

Default roles are defined in roles.py.

	
log_datefmt c.JupyterHub.log_datefmt = Unicode('%Y-%m-%d %H:%M:%S')

	The date format used by logging formatters for %(asctime)s

	
log_format c.JupyterHub.log_format = Unicode('[%(name)s]%(highlevel)s %(message)s')

	The Logging format template

	
log_level c.JupyterHub.log_level = Enum(30)

	Set the log level by value or name.

	
logo_file c.JupyterHub.logo_file = Unicode('')

	Specify path to a logo image to override the Jupyter logo in the banner.

	
named_server_limit_per_user c.JupyterHub.named_server_limit_per_user = Int(0)

	Maximum number of concurrent named servers that can be created by a user at a time.

Setting this can limit the total resources a user can consume.

If set to 0, no limit is enforced.

	
oauth_token_expires_in c.JupyterHub.oauth_token_expires_in = Int(0)

	Expiry (in seconds) of OAuth access tokens.

The default is to expire when the cookie storing them expires,
according to cookie_max_age_days config.

These are the tokens stored in cookies when you visit
a single-user server or service.
When they expire, you must re-authenticate with the Hub,
even if your Hub authentication is still valid.
If your Hub authentication is valid,
logging in may be a transparent redirect as you refresh the page.

This does not affect JupyterHub API tokens in general,
which do not expire by default.
Only tokens issued during the oauth flow
accessing services and single-user servers are affected.

New in version 1.4: OAuth token expires_in was not previously configurable.

Changed in version 1.4: Default now uses cookie_max_age_days so that oauth tokens
which are generally stored in cookies,
expire when the cookies storing them expire.
Previously, it was one hour.

	
pid_file c.JupyterHub.pid_file = Unicode('')

	File to write PID
Useful for daemonizing JupyterHub.

	
port c.JupyterHub.port = Int(8000)

	The public facing port of the proxy.

This is the port on which the proxy will listen.
This is the only port through which JupyterHub
should be accessed by users.

	
proxy_api_ip c.JupyterHub.proxy_api_ip = Unicode('')

	DEPRECATED since version 0.8 : Use ConfigurableHTTPProxy.api_url

	
proxy_api_port c.JupyterHub.proxy_api_port = Int(0)

	DEPRECATED since version 0.8 : Use ConfigurableHTTPProxy.api_url

	
proxy_auth_token c.JupyterHub.proxy_auth_token = Unicode('')

	DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.auth_token

	
proxy_check_interval c.JupyterHub.proxy_check_interval = Int(5)

	DEPRECATED since version 0.8: Use ConfigurableHTTPProxy.check_running_interval

	
proxy_class c.JupyterHub.proxy_class = EntryPointType(<class 'jupyterhub.proxy.ConfigurableHTTPProxy'>)

	The class to use for configuring the JupyterHub proxy.

Should be a subclass of jupyterhub.proxy.Proxy.

Changed in version 1.0: proxies may be registered via entry points,
e.g. c.JupyterHub.proxy_class = 'traefik'

	Currently installed:
	
	configurable-http-proxy: jupyterhub.proxy.ConfigurableHTTPProxy

	default: jupyterhub.proxy.ConfigurableHTTPProxy

	
proxy_cmd c.JupyterHub.proxy_cmd = Command()

	DEPRECATED since version 0.8. Use ConfigurableHTTPProxy.command

	
recreate_internal_certs c.JupyterHub.recreate_internal_certs = Bool(False)

	Recreate all certificates used within JupyterHub on restart.

Note: enabling this feature requires restarting all notebook servers.

Use with internal_ssl

	
redirect_to_server c.JupyterHub.redirect_to_server = Bool(True)

	Redirect user to server (if running), instead of control panel.

	
reset_db c.JupyterHub.reset_db = Bool(False)

	Purge and reset the database.

	
service_check_interval c.JupyterHub.service_check_interval = Int(60)

	Interval (in seconds) at which to check connectivity of services with web endpoints.

	
service_tokens c.JupyterHub.service_tokens = Dict()

	Dict of token:servicename to be loaded into the database.

Allows ahead-of-time generation of API tokens for use by externally managed services.

	
services c.JupyterHub.services = List()

	List of service specification dictionaries.

A service

For instance:

services = [
 {
 'name': 'cull_idle',
 'command': ['/path/to/cull_idle_servers.py'],
 },
 {
 'name': 'formgrader',
 'url': 'http://127.0.0.1:1234',
 'api_token': 'super-secret',
 'environment':
 }
]

	
show_config c.JupyterHub.show_config = Bool(False)

	Instead of starting the Application, dump configuration to stdout

	
show_config_json c.JupyterHub.show_config_json = Bool(False)

	Instead of starting the Application, dump configuration to stdout (as JSON)

	
shutdown_on_logout c.JupyterHub.shutdown_on_logout = Bool(False)

	Shuts down all user servers on logout

	
spawner_class c.JupyterHub.spawner_class = EntryPointType(<class 'jupyterhub.spawner.LocalProcessSpawner'>)

	The class to use for spawning single-user servers.

Should be a subclass of jupyterhub.spawner.Spawner.

Changed in version 1.0: spawners may be registered via entry points,
e.g. c.JupyterHub.spawner_class = 'localprocess'

	Currently installed:
	
	default: jupyterhub.spawner.LocalProcessSpawner

	localprocess: jupyterhub.spawner.LocalProcessSpawner

	simple: jupyterhub.spawner.SimpleLocalProcessSpawner

	
ssl_cert c.JupyterHub.ssl_cert = Unicode('')

	Path to SSL certificate file for the public facing interface of the proxy

When setting this, you should also set ssl_key

	
ssl_key c.JupyterHub.ssl_key = Unicode('')

	Path to SSL key file for the public facing interface of the proxy

When setting this, you should also set ssl_cert

	
statsd_host c.JupyterHub.statsd_host = Unicode('')

	Host to send statsd metrics to. An empty string (the default) disables sending metrics.

	
statsd_port c.JupyterHub.statsd_port = Int(8125)

	Port on which to send statsd metrics about the hub

	
statsd_prefix c.JupyterHub.statsd_prefix = Unicode('jupyterhub')

	Prefix to use for all metrics sent by jupyterhub to statsd

	
subdomain_host c.JupyterHub.subdomain_host = Unicode('')

	Run single-user servers on subdomains of this host.

This should be the full https://hub.domain.tld[:port].

Provides additional cross-site protections for javascript served by single-user servers.

Requires <username>.hub.domain.tld to resolve to the same host as hub.domain.tld.

In general, this is most easily achieved with wildcard DNS.

When using SSL (i.e. always) this also requires a wildcard SSL certificate.

	
template_paths c.JupyterHub.template_paths = List()

	Paths to search for jinja templates, before using the default templates.

	
template_vars c.JupyterHub.template_vars = Dict()

	Extra variables to be passed into jinja templates

	
tornado_settings c.JupyterHub.tornado_settings = Dict()

	Extra settings overrides to pass to the tornado application.

	
trust_user_provided_tokens c.JupyterHub.trust_user_provided_tokens = Bool(False)

	Trust user-provided tokens (via JupyterHub.service_tokens)
to have good entropy.

If you are not inserting additional tokens via configuration file,
this flag has no effect.

In JupyterHub 0.8, internally generated tokens do not
pass through additional hashing because the hashing is costly
and does not increase the entropy of already-good UUIDs.

User-provided tokens, on the other hand, are not trusted to have good entropy by default,
and are passed through many rounds of hashing to stretch the entropy of the key
(i.e. user-provided tokens are treated as passwords instead of random keys).
These keys are more costly to check.

If your inserted tokens are generated by a good-quality mechanism,
e.g. openssl rand -hex 32, then you can set this flag to True
to reduce the cost of checking authentication tokens.

	
trusted_alt_names c.JupyterHub.trusted_alt_names = List()

	Names to include in the subject alternative name.

These names will be used for server name verification. This is useful
if JupyterHub is being run behind a reverse proxy or services using ssl
are on different hosts.

Use with internal_ssl

	
trusted_downstream_ips c.JupyterHub.trusted_downstream_ips = List()

	Downstream proxy IP addresses to trust.

This sets the list of IP addresses that are trusted and skipped when processing
the X-Forwarded-For header. For example, if an external proxy is used for TLS
termination, its IP address should be added to this list to ensure the correct
client IP addresses are recorded in the logs instead of the proxy server’s IP
address.

	
upgrade_db c.JupyterHub.upgrade_db = Bool(False)

	Upgrade the database automatically on start.

Only safe if database is regularly backed up.
Only SQLite databases will be backed up to a local file automatically.

	
use_legacy_stopped_server_status_code c.JupyterHub.use_legacy_stopped_server_status_code = Bool(False)

	Return 503 rather than 424 when request comes in for a non-running server.

Prior to JupyterHub 2.0, we returned a 503 when any request came in for
a user server that was currently not running. By default, JupyterHub 2.0
will return a 424 - this makes operational metric dashboards more useful.

JupyterLab < 3.2 expected the 503 to know if the user server is no longer
running, and prompted the user to start their server. Set this config to
true to retain the old behavior, so JupyterLab < 3.2 can continue to show
the appropriate UI when the user server is stopped.

This option will be removed in a future release.

	
user_redirect_hook c.JupyterHub.user_redirect_hook = Callable(None)

	Callable to affect behavior of /user-redirect/

Receives 4 parameters:
1. path - URL path that was provided after /user-redirect/
2. request - A Tornado HTTPServerRequest representing the current request.
3. user - The currently authenticated user.
4. base_url - The base_url of the current hub, for relative redirects

It should return the new URL to redirect to, or None to preserve
current behavior.

 Authenticators

Authenticators

Module: jupyterhub.auth

Base Authenticator class and the default PAM Authenticator

Authenticator

	
class jupyterhub.auth.Authenticator(**kwargs)

	Base class for implementing an authentication provider for JupyterHub

	
add_user(user)

	Hook called when a user is added to JupyterHub

	This is called:
	
	When a user first authenticates

	When the hub restarts, for all users.

This method may be a coroutine.

By default, this just adds the user to the allowed_users set.

Subclasses may do more extensive things, such as adding actual unix users,
but they should call super to ensure the allowed_users set is updated.

Note that this should be idempotent, since it is called whenever the hub restarts
for all users.

	Parameters

	user (User) – The User wrapper object

	
admin_users c.Authenticator.admin_users = Set()

	Set of users that will have admin rights on this JupyterHub.

Note: As of JupyterHub 2.0,
full admin rights should not be required,
and more precise permissions can be managed via roles.

	Admin users have extra privileges:
	
	Use the admin panel to see list of users logged in

	Add / remove users in some authenticators

	Restart / halt the hub

	Start / stop users’ single-user servers

	Can access each individual users’ single-user server (if configured)

Admin access should be treated the same way root access is.

Defaults to an empty set, in which case no user has admin access.

	
allowed_users c.Authenticator.allowed_users = Set()

	Set of usernames that are allowed to log in.

Use this with supported authenticators to restrict which users can log in. This is an
additional list that further restricts users, beyond whatever restrictions the
authenticator has in place. Any user in this list is granted the ‘user’ role on hub startup.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.whitelist renamed to allowed_users

	
auth_refresh_age c.Authenticator.auth_refresh_age = Int(300)

	The max age (in seconds) of authentication info
before forcing a refresh of user auth info.

Refreshing auth info allows, e.g. requesting/re-validating auth tokens.

See refresh_user() for what happens when user auth info is refreshed
(nothing by default).

	
async authenticate(handler, data)

	Authenticate a user with login form data

This must be a coroutine.

It must return the username on successful authentication,
and return None on failed authentication.

Checking allowed_users/blocked_users is handled separately by the caller.

Changed in version 0.8: Allow authenticate to return a dict containing auth_state.

	Parameters

	
	handler (tornado.web.RequestHandler [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler]) – the current request handler

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The formdata of the login form.
The default form has ‘username’ and ‘password’ fields.

	Returns

	The username of the authenticated user,
or None if Authentication failed.

The Authenticator may return a dict instead, which MUST have a
key name holding the username, and MAY have two optional keys
set: auth_state, a dictionary of of auth state that will be
persisted; and admin, the admin setting value for the user.

	Return type

	user (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None])

	
auto_login c.Authenticator.auto_login = Bool(False)

	Automatically begin the login process

rather than starting with a “Login with…” link at /hub/login

To work, .login_url() must give a URL other than the default /hub/login,
such as an oauth handler or another automatic login handler,
registered with .get_handlers().

New in version 0.8.

	
auto_login_oauth2_authorize c.Authenticator.auto_login_oauth2_authorize = Bool(False)

	Automatically begin login process for OAuth2 authorization requests

When another application is using JupyterHub as OAuth2 provider, it
sends users to /hub/api/oauth2/authorize. If the user isn’t logged
in already, and auto_login is not set, the user will be dumped on the
hub’s home page, without any context on what to do next.

Setting this to true will automatically redirect users to login if
they aren’t logged in only on the /hub/api/oauth2/authorize
endpoint.

New in version 1.5.

	
blocked_users c.Authenticator.blocked_users = Set()

	Set of usernames that are not allowed to log in.

Use this with supported authenticators to restrict which users can not log in. This is an
additional block list that further restricts users, beyond whatever restrictions the
authenticator has in place.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.blacklist renamed to blocked_users

	
check_allowed(username, authentication=None)

	Check if a username is allowed to authenticate based on configuration

Return True if username is allowed, False otherwise.
No allowed_users set means any username is allowed.

Names are normalized before being checked against the allowed set.

Changed in version 1.0: Signature updated to accept authentication data and any future changes

Changed in version 1.2: Renamed check_whitelist to check_allowed

	
check_blocked_users(username, authentication=None)

	Check if a username is blocked to authenticate based on Authenticator.blocked configuration

Return True if username is allowed, False otherwise.
No block list means any username is allowed.

Names are normalized before being checked against the block list.

Changed in version 1.0: Signature updated to accept authentication data as second argument

Changed in version 1.2: Renamed check_blacklist to check_blocked_users

	
delete_invalid_users c.Authenticator.delete_invalid_users = Bool(False)

	Delete any users from the database that do not pass validation

When JupyterHub starts, .add_user will be called
on each user in the database to verify that all users are still valid.

If delete_invalid_users is True,
any users that do not pass validation will be deleted from the database.
Use this if users might be deleted from an external system,
such as local user accounts.

If False (default), invalid users remain in the Hub’s database
and a warning will be issued.
This is the default to avoid data loss due to config changes.

	
delete_user(user)

	Hook called when a user is deleted

Removes the user from the allowed_users set.
Subclasses should call super to ensure the allowed_users set is updated.

	Parameters

	user (User) – The User wrapper object

	
enable_auth_state c.Authenticator.enable_auth_state = Bool(False)

	Enable persisting auth_state (if available).

auth_state will be encrypted and stored in the Hub’s database.
This can include things like authentication tokens, etc.
to be passed to Spawners as environment variables.

Encrypting auth_state requires the cryptography package.

Additionally, the JUPYTERHUB_CRYPT_KEY environment variable must
contain one (or more, separated by ;) 32B encryption keys.
These can be either base64 or hex-encoded.

If encryption is unavailable, auth_state cannot be persisted.

New in JupyterHub 0.8

	
async get_authenticated_user(handler, data)

	Authenticate the user who is attempting to log in

Returns user dict if successful, None otherwise.

This calls authenticate, which should be overridden in subclasses,
normalizes the username if any normalization should be done,
and then validates the name in the allowed set.

This is the outer API for authenticating a user.
Subclasses should not override this method.

	The various stages can be overridden separately:
	
	authenticate turns formdata into a username

	normalize_username normalizes the username

	check_allowed checks against the allowed usernames

Changed in version 0.8: return dict instead of username

	
get_custom_html(base_url)

	Get custom HTML for the authenticator.

	
get_handlers(app)

	Return any custom handlers the authenticator needs to register

Used in conjugation with login_url and logout_url.

	Parameters

	app (JupyterHub Application) – the application object, in case it needs to be accessed for info.

	Returns

	list of ('/url', Handler) tuples passed to tornado.
The Hub prefix is added to any URLs.

	Return type

	handlers (list [https://docs.python.org/3/library/stdtypes.html#list])

	
is_admin(handler, authentication)

	Authentication helper to determine a user’s admin status.

	Parameters

	
	handler (tornado.web.RequestHandler [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler]) – the current request handler

	authentication – The authetication dict generated by authenticate.

	Returns

	The admin status of the user, or None if it could not be
determined or should not change.

	Return type

	admin_status (Bool or None [https://docs.python.org/3/library/constants.html#None])

	
login_url(base_url)

	Override this when registering a custom login handler

Generally used by authenticators that do not use simple form-based authentication.

The subclass overriding this is responsible for making sure there is a handler
available to handle the URL returned from this method, using the get_handlers
method.

	Parameters

	base_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – the base URL of the Hub (e.g. /hub/)

	Returns

	The login URL, e.g. ‘/hub/login’

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
logout_url(base_url)

	Override when registering a custom logout handler

The subclass overriding this is responsible for making sure there is a handler
available to handle the URL returned from this method, using the get_handlers
method.

	Parameters

	base_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – the base URL of the Hub (e.g. /hub/)

	Returns

	The logout URL, e.g. ‘/hub/logout’

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
normalize_username(username)

	Normalize the given username and return it

Override in subclasses if usernames need different normalization rules.

The default attempts to lowercase the username and apply username_map if it is
set.

	
post_auth_hook c.Authenticator.post_auth_hook = Any(None)

	An optional hook function that you can implement to do some
bootstrapping work during authentication. For example, loading user account
details from an external system.

This function is called after the user has passed all authentication checks
and is ready to successfully authenticate. This function must return the
authentication dict reguardless of changes to it.

This maybe a coroutine.

Example:

import os, pwd
def my_hook(authenticator, handler, authentication):
 user_data = pwd.getpwnam(authentication['name'])
 spawn_data = {
 'pw_data': user_data
 'gid_list': os.getgrouplist(authentication['name'], user_data.pw_gid)
 }

 if authentication['auth_state'] is None:
 authentication['auth_state'] = {}
 authentication['auth_state']['spawn_data'] = spawn_data

 return authentication

c.Authenticator.post_auth_hook = my_hook

	
post_spawn_stop(user, spawner)

	Hook called after stopping a user container

Can be used to do auth-related cleanup, e.g. closing PAM sessions.

	
pre_spawn_start(user, spawner)

	Hook called before spawning a user’s server

Can be used to do auth-related startup, e.g. opening PAM sessions.

	
refresh_pre_spawn c.Authenticator.refresh_pre_spawn = Bool(False)

	Force refresh of auth prior to spawn.

This forces refresh_user() to be called prior to launching
a server, to ensure that auth state is up-to-date.

This can be important when e.g. auth tokens that may have expired
are passed to the spawner via environment variables from auth_state.

If refresh_user cannot refresh the user auth data,
launch will fail until the user logs in again.

	
async refresh_user(user, handler=None)

	Refresh auth data for a given user

Allows refreshing or invalidating auth data.

Only override if your authenticator needs
to refresh its data about users once in a while.

	Parameters

	
	user (User) – the user to refresh

	handler (tornado.web.RequestHandler [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler] or None [https://docs.python.org/3/library/constants.html#None]) – the current request handler

	Returns

	Return True if auth data for the user is up-to-date
and no updates are required.

Return False if the user’s auth data has expired,
and they should be required to login again.

Return a dict of auth data if some values should be updated.
This dict should have the same structure as that returned
by authenticate() when it returns a dict.
Any fields present will refresh the value for the user.
Any fields not present will be left unchanged.
This can include updating .admin or .auth_state fields.

	Return type

	auth_data (bool [https://docs.python.org/3/library/functions.html#bool] or dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
async run_post_auth_hook(handler, authentication)

	Run the post_auth_hook if defined

	Parameters

	
	handler (tornado.web.RequestHandler [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler]) – the current request handler

	authentication (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – User authentication data dictionary. Contains the
username (‘name’), admin status (‘admin’), and auth state dictionary (‘auth_state’).

	Returns

	The hook must always return the authentication dict

	Return type

	Authentication (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
username_map c.Authenticator.username_map = Dict()

	Dictionary mapping authenticator usernames to JupyterHub users.

Primarily used to normalize OAuth user names to local users.

	
username_pattern c.Authenticator.username_pattern = Unicode('')

	Regular expression pattern that all valid usernames must match.

If a username does not match the pattern specified here, authentication will not be attempted.

If not set, allow any username.

	
validate_username(username)

	Validate a normalized username

Return True if username is valid, False otherwise.

	
whitelist c.Authenticator.whitelist = Set()

	Deprecated, use Authenticator.allowed_users

LocalAuthenticator

	
class jupyterhub.auth.LocalAuthenticator(**kwargs)

	Base class for Authenticators that work with local Linux/UNIX users

Checks for local users, and can attempt to create them if they exist.

	
add_system_user(user)

	Create a new local UNIX user on the system.

Tested to work on FreeBSD and Linux, at least.

	
async add_user(user)

	Hook called whenever a new user is added

If self.create_system_users, the user will attempt to be created if it doesn’t exist.

	
add_user_cmd c.LocalAuthenticator.add_user_cmd = Command()

	The command to use for creating users as a list of strings

For each element in the list, the string USERNAME will be replaced with
the user’s username. The username will also be appended as the final argument.

For Linux, the default value is:

[‘adduser’, ‘-q’, ‘–gecos’, ‘””’, ‘–disabled-password’]

To specify a custom home directory, set this to:

[‘adduser’, ‘-q’, ‘–gecos’, ‘””’, ‘–home’, ‘/customhome/USERNAME’, ‘–disabled-password’]

This will run the command:

adduser -q –gecos “” –home /customhome/river –disabled-password river

when the user ‘river’ is created.

	
admin_users c.LocalAuthenticator.admin_users = Set()

	Set of users that will have admin rights on this JupyterHub.

Note: As of JupyterHub 2.0,
full admin rights should not be required,
and more precise permissions can be managed via roles.

	Admin users have extra privileges:
	
	Use the admin panel to see list of users logged in

	Add / remove users in some authenticators

	Restart / halt the hub

	Start / stop users’ single-user servers

	Can access each individual users’ single-user server (if configured)

Admin access should be treated the same way root access is.

Defaults to an empty set, in which case no user has admin access.

	
allowed_groups c.LocalAuthenticator.allowed_groups = Set()

	Allow login from all users in these UNIX groups.

If set, allowed username set is ignored.

	
allowed_users c.LocalAuthenticator.allowed_users = Set()

	Set of usernames that are allowed to log in.

Use this with supported authenticators to restrict which users can log in. This is an
additional list that further restricts users, beyond whatever restrictions the
authenticator has in place. Any user in this list is granted the ‘user’ role on hub startup.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.whitelist renamed to allowed_users

	
auth_refresh_age c.LocalAuthenticator.auth_refresh_age = Int(300)

	The max age (in seconds) of authentication info
before forcing a refresh of user auth info.

Refreshing auth info allows, e.g. requesting/re-validating auth tokens.

See refresh_user() for what happens when user auth info is refreshed
(nothing by default).

	
auto_login c.LocalAuthenticator.auto_login = Bool(False)

	Automatically begin the login process

rather than starting with a “Login with…” link at /hub/login

To work, .login_url() must give a URL other than the default /hub/login,
such as an oauth handler or another automatic login handler,
registered with .get_handlers().

New in version 0.8.

	
auto_login_oauth2_authorize c.LocalAuthenticator.auto_login_oauth2_authorize = Bool(False)

	Automatically begin login process for OAuth2 authorization requests

When another application is using JupyterHub as OAuth2 provider, it
sends users to /hub/api/oauth2/authorize. If the user isn’t logged
in already, and auto_login is not set, the user will be dumped on the
hub’s home page, without any context on what to do next.

Setting this to true will automatically redirect users to login if
they aren’t logged in only on the /hub/api/oauth2/authorize
endpoint.

New in version 1.5.

	
blocked_users c.LocalAuthenticator.blocked_users = Set()

	Set of usernames that are not allowed to log in.

Use this with supported authenticators to restrict which users can not log in. This is an
additional block list that further restricts users, beyond whatever restrictions the
authenticator has in place.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.blacklist renamed to blocked_users

	
check_allowed(username, authentication=None)

	Check if a username is allowed to authenticate based on configuration

Return True if username is allowed, False otherwise.
No allowed_users set means any username is allowed.

Names are normalized before being checked against the allowed set.

Changed in version 1.0: Signature updated to accept authentication data and any future changes

Changed in version 1.2: Renamed check_whitelist to check_allowed

	
check_allowed_groups(username, authentication=None)

	If allowed_groups is configured, check if authenticating user is part of group.

	
create_system_users c.LocalAuthenticator.create_system_users = Bool(False)

	If set to True, will attempt to create local system users if they do not exist already.

Supports Linux and BSD variants only.

	
delete_invalid_users c.LocalAuthenticator.delete_invalid_users = Bool(False)

	Delete any users from the database that do not pass validation

When JupyterHub starts, .add_user will be called
on each user in the database to verify that all users are still valid.

If delete_invalid_users is True,
any users that do not pass validation will be deleted from the database.
Use this if users might be deleted from an external system,
such as local user accounts.

If False (default), invalid users remain in the Hub’s database
and a warning will be issued.
This is the default to avoid data loss due to config changes.

	
enable_auth_state c.LocalAuthenticator.enable_auth_state = Bool(False)

	Enable persisting auth_state (if available).

auth_state will be encrypted and stored in the Hub’s database.
This can include things like authentication tokens, etc.
to be passed to Spawners as environment variables.

Encrypting auth_state requires the cryptography package.

Additionally, the JUPYTERHUB_CRYPT_KEY environment variable must
contain one (or more, separated by ;) 32B encryption keys.
These can be either base64 or hex-encoded.

If encryption is unavailable, auth_state cannot be persisted.

New in JupyterHub 0.8

	
group_whitelist c.LocalAuthenticator.group_whitelist = Set()

	DEPRECATED: use allowed_groups

	
post_auth_hook c.LocalAuthenticator.post_auth_hook = Any(None)

	An optional hook function that you can implement to do some
bootstrapping work during authentication. For example, loading user account
details from an external system.

This function is called after the user has passed all authentication checks
and is ready to successfully authenticate. This function must return the
authentication dict reguardless of changes to it.

This maybe a coroutine.

Example:

import os, pwd
def my_hook(authenticator, handler, authentication):
 user_data = pwd.getpwnam(authentication['name'])
 spawn_data = {
 'pw_data': user_data
 'gid_list': os.getgrouplist(authentication['name'], user_data.pw_gid)
 }

 if authentication['auth_state'] is None:
 authentication['auth_state'] = {}
 authentication['auth_state']['spawn_data'] = spawn_data

 return authentication

c.Authenticator.post_auth_hook = my_hook

	
refresh_pre_spawn c.LocalAuthenticator.refresh_pre_spawn = Bool(False)

	Force refresh of auth prior to spawn.

This forces refresh_user() to be called prior to launching
a server, to ensure that auth state is up-to-date.

This can be important when e.g. auth tokens that may have expired
are passed to the spawner via environment variables from auth_state.

If refresh_user cannot refresh the user auth data,
launch will fail until the user logs in again.

	
system_user_exists(user)

	Check if the user exists on the system

	
uids c.LocalAuthenticator.uids = Dict()

	Dictionary of uids to use at user creation time.
This helps ensure that users created from the database
get the same uid each time they are created
in temporary deployments or containers.

	
username_map c.LocalAuthenticator.username_map = Dict()

	Dictionary mapping authenticator usernames to JupyterHub users.

Primarily used to normalize OAuth user names to local users.

	
username_pattern c.LocalAuthenticator.username_pattern = Unicode('')

	Regular expression pattern that all valid usernames must match.

If a username does not match the pattern specified here, authentication will not be attempted.

If not set, allow any username.

	
whitelist c.LocalAuthenticator.whitelist = Set()

	Deprecated, use Authenticator.allowed_users

PAMAuthenticator

	
class jupyterhub.auth.PAMAuthenticator(**kwargs)

	Authenticate local UNIX users with PAM

	
add_user_cmd c.PAMAuthenticator.add_user_cmd = Command()

	The command to use for creating users as a list of strings

For each element in the list, the string USERNAME will be replaced with
the user’s username. The username will also be appended as the final argument.

For Linux, the default value is:

[‘adduser’, ‘-q’, ‘–gecos’, ‘””’, ‘–disabled-password’]

To specify a custom home directory, set this to:

[‘adduser’, ‘-q’, ‘–gecos’, ‘””’, ‘–home’, ‘/customhome/USERNAME’, ‘–disabled-password’]

This will run the command:

adduser -q –gecos “” –home /customhome/river –disabled-password river

when the user ‘river’ is created.

	
admin_groups c.PAMAuthenticator.admin_groups = Set()

	Authoritative list of user groups that determine admin access.
Users not in these groups can still be granted admin status through admin_users.

allowed/blocked rules still apply.

Note: As of JupyterHub 2.0,
full admin rights should not be required,
and more precise permissions can be managed via roles.

	
admin_users c.PAMAuthenticator.admin_users = Set()

	Set of users that will have admin rights on this JupyterHub.

Note: As of JupyterHub 2.0,
full admin rights should not be required,
and more precise permissions can be managed via roles.

	Admin users have extra privileges:
	
	Use the admin panel to see list of users logged in

	Add / remove users in some authenticators

	Restart / halt the hub

	Start / stop users’ single-user servers

	Can access each individual users’ single-user server (if configured)

Admin access should be treated the same way root access is.

Defaults to an empty set, in which case no user has admin access.

	
allowed_groups c.PAMAuthenticator.allowed_groups = Set()

	Allow login from all users in these UNIX groups.

If set, allowed username set is ignored.

	
allowed_users c.PAMAuthenticator.allowed_users = Set()

	Set of usernames that are allowed to log in.

Use this with supported authenticators to restrict which users can log in. This is an
additional list that further restricts users, beyond whatever restrictions the
authenticator has in place. Any user in this list is granted the ‘user’ role on hub startup.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.whitelist renamed to allowed_users

	
auth_refresh_age c.PAMAuthenticator.auth_refresh_age = Int(300)

	The max age (in seconds) of authentication info
before forcing a refresh of user auth info.

Refreshing auth info allows, e.g. requesting/re-validating auth tokens.

See refresh_user() for what happens when user auth info is refreshed
(nothing by default).

	
auto_login c.PAMAuthenticator.auto_login = Bool(False)

	Automatically begin the login process

rather than starting with a “Login with…” link at /hub/login

To work, .login_url() must give a URL other than the default /hub/login,
such as an oauth handler or another automatic login handler,
registered with .get_handlers().

New in version 0.8.

	
auto_login_oauth2_authorize c.PAMAuthenticator.auto_login_oauth2_authorize = Bool(False)

	Automatically begin login process for OAuth2 authorization requests

When another application is using JupyterHub as OAuth2 provider, it
sends users to /hub/api/oauth2/authorize. If the user isn’t logged
in already, and auto_login is not set, the user will be dumped on the
hub’s home page, without any context on what to do next.

Setting this to true will automatically redirect users to login if
they aren’t logged in only on the /hub/api/oauth2/authorize
endpoint.

New in version 1.5.

	
blocked_users c.PAMAuthenticator.blocked_users = Set()

	Set of usernames that are not allowed to log in.

Use this with supported authenticators to restrict which users can not log in. This is an
additional block list that further restricts users, beyond whatever restrictions the
authenticator has in place.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.blacklist renamed to blocked_users

	
check_account c.PAMAuthenticator.check_account = Bool(True)

	Whether to check the user’s account status via PAM during authentication.

The PAM account stack performs non-authentication based account
management. It is typically used to restrict/permit access to a
service and this step is needed to access the host’s user access control.

Disabling this can be dangerous as authenticated but unauthorized users may
be granted access and, therefore, arbitrary execution on the system.

	
create_system_users c.PAMAuthenticator.create_system_users = Bool(False)

	If set to True, will attempt to create local system users if they do not exist already.

Supports Linux and BSD variants only.

	
delete_invalid_users c.PAMAuthenticator.delete_invalid_users = Bool(False)

	Delete any users from the database that do not pass validation

When JupyterHub starts, .add_user will be called
on each user in the database to verify that all users are still valid.

If delete_invalid_users is True,
any users that do not pass validation will be deleted from the database.
Use this if users might be deleted from an external system,
such as local user accounts.

If False (default), invalid users remain in the Hub’s database
and a warning will be issued.
This is the default to avoid data loss due to config changes.

	
enable_auth_state c.PAMAuthenticator.enable_auth_state = Bool(False)

	Enable persisting auth_state (if available).

auth_state will be encrypted and stored in the Hub’s database.
This can include things like authentication tokens, etc.
to be passed to Spawners as environment variables.

Encrypting auth_state requires the cryptography package.

Additionally, the JUPYTERHUB_CRYPT_KEY environment variable must
contain one (or more, separated by ;) 32B encryption keys.
These can be either base64 or hex-encoded.

If encryption is unavailable, auth_state cannot be persisted.

New in JupyterHub 0.8

	
encoding c.PAMAuthenticator.encoding = Unicode('utf8')

	The text encoding to use when communicating with PAM

	
group_whitelist c.PAMAuthenticator.group_whitelist = Set()

	DEPRECATED: use allowed_groups

	
open_sessions c.PAMAuthenticator.open_sessions = Bool(True)

	Whether to open a new PAM session when spawners are started.

This may trigger things like mounting shared filsystems,
loading credentials, etc. depending on system configuration,
but it does not always work.

If any errors are encountered when opening/closing PAM sessions,
this is automatically set to False.

	
pam_normalize_username c.PAMAuthenticator.pam_normalize_username = Bool(False)

	Round-trip the username via PAM lookups to make sure it is unique

PAM can accept multiple usernames that map to the same user,
for example DOMAINusername in some cases. To prevent this,
convert username into uid, then back to uid to normalize.

	
post_auth_hook c.PAMAuthenticator.post_auth_hook = Any(None)

	An optional hook function that you can implement to do some
bootstrapping work during authentication. For example, loading user account
details from an external system.

This function is called after the user has passed all authentication checks
and is ready to successfully authenticate. This function must return the
authentication dict reguardless of changes to it.

This maybe a coroutine.

Example:

import os, pwd
def my_hook(authenticator, handler, authentication):
 user_data = pwd.getpwnam(authentication['name'])
 spawn_data = {
 'pw_data': user_data
 'gid_list': os.getgrouplist(authentication['name'], user_data.pw_gid)
 }

 if authentication['auth_state'] is None:
 authentication['auth_state'] = {}
 authentication['auth_state']['spawn_data'] = spawn_data

 return authentication

c.Authenticator.post_auth_hook = my_hook

	
refresh_pre_spawn c.PAMAuthenticator.refresh_pre_spawn = Bool(False)

	Force refresh of auth prior to spawn.

This forces refresh_user() to be called prior to launching
a server, to ensure that auth state is up-to-date.

This can be important when e.g. auth tokens that may have expired
are passed to the spawner via environment variables from auth_state.

If refresh_user cannot refresh the user auth data,
launch will fail until the user logs in again.

	
service c.PAMAuthenticator.service = Unicode('login')

	The name of the PAM service to use for authentication

	
uids c.PAMAuthenticator.uids = Dict()

	Dictionary of uids to use at user creation time.
This helps ensure that users created from the database
get the same uid each time they are created
in temporary deployments or containers.

	
username_map c.PAMAuthenticator.username_map = Dict()

	Dictionary mapping authenticator usernames to JupyterHub users.

Primarily used to normalize OAuth user names to local users.

	
username_pattern c.PAMAuthenticator.username_pattern = Unicode('')

	Regular expression pattern that all valid usernames must match.

If a username does not match the pattern specified here, authentication will not be attempted.

If not set, allow any username.

	
whitelist c.PAMAuthenticator.whitelist = Set()

	Deprecated, use Authenticator.allowed_users

DummyAuthenticator

	
class jupyterhub.auth.DummyAuthenticator(**kwargs)

	Dummy Authenticator for testing

By default, any username + password is allowed
If a non-empty password is set, any username will be allowed
if it logs in with that password.

New in version 1.0.

	
admin_users c.DummyAuthenticator.admin_users = Set()

	Set of users that will have admin rights on this JupyterHub.

Note: As of JupyterHub 2.0,
full admin rights should not be required,
and more precise permissions can be managed via roles.

	Admin users have extra privileges:
	
	Use the admin panel to see list of users logged in

	Add / remove users in some authenticators

	Restart / halt the hub

	Start / stop users’ single-user servers

	Can access each individual users’ single-user server (if configured)

Admin access should be treated the same way root access is.

Defaults to an empty set, in which case no user has admin access.

	
allowed_users c.DummyAuthenticator.allowed_users = Set()

	Set of usernames that are allowed to log in.

Use this with supported authenticators to restrict which users can log in. This is an
additional list that further restricts users, beyond whatever restrictions the
authenticator has in place. Any user in this list is granted the ‘user’ role on hub startup.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.whitelist renamed to allowed_users

	
auth_refresh_age c.DummyAuthenticator.auth_refresh_age = Int(300)

	The max age (in seconds) of authentication info
before forcing a refresh of user auth info.

Refreshing auth info allows, e.g. requesting/re-validating auth tokens.

See refresh_user() for what happens when user auth info is refreshed
(nothing by default).

	
auto_login c.DummyAuthenticator.auto_login = Bool(False)

	Automatically begin the login process

rather than starting with a “Login with…” link at /hub/login

To work, .login_url() must give a URL other than the default /hub/login,
such as an oauth handler or another automatic login handler,
registered with .get_handlers().

New in version 0.8.

	
auto_login_oauth2_authorize c.DummyAuthenticator.auto_login_oauth2_authorize = Bool(False)

	Automatically begin login process for OAuth2 authorization requests

When another application is using JupyterHub as OAuth2 provider, it
sends users to /hub/api/oauth2/authorize. If the user isn’t logged
in already, and auto_login is not set, the user will be dumped on the
hub’s home page, without any context on what to do next.

Setting this to true will automatically redirect users to login if
they aren’t logged in only on the /hub/api/oauth2/authorize
endpoint.

New in version 1.5.

	
blocked_users c.DummyAuthenticator.blocked_users = Set()

	Set of usernames that are not allowed to log in.

Use this with supported authenticators to restrict which users can not log in. This is an
additional block list that further restricts users, beyond whatever restrictions the
authenticator has in place.

If empty, does not perform any additional restriction.

Changed in version 1.2: Authenticator.blacklist renamed to blocked_users

	
delete_invalid_users c.DummyAuthenticator.delete_invalid_users = Bool(False)

	Delete any users from the database that do not pass validation

When JupyterHub starts, .add_user will be called
on each user in the database to verify that all users are still valid.

If delete_invalid_users is True,
any users that do not pass validation will be deleted from the database.
Use this if users might be deleted from an external system,
such as local user accounts.

If False (default), invalid users remain in the Hub’s database
and a warning will be issued.
This is the default to avoid data loss due to config changes.

	
enable_auth_state c.DummyAuthenticator.enable_auth_state = Bool(False)

	Enable persisting auth_state (if available).

auth_state will be encrypted and stored in the Hub’s database.
This can include things like authentication tokens, etc.
to be passed to Spawners as environment variables.

Encrypting auth_state requires the cryptography package.

Additionally, the JUPYTERHUB_CRYPT_KEY environment variable must
contain one (or more, separated by ;) 32B encryption keys.
These can be either base64 or hex-encoded.

If encryption is unavailable, auth_state cannot be persisted.

New in JupyterHub 0.8

	
password c.DummyAuthenticator.password = Unicode('')

	Set a global password for all users wanting to log in.

This allows users with any username to log in with the same static password.

	
post_auth_hook c.DummyAuthenticator.post_auth_hook = Any(None)

	An optional hook function that you can implement to do some
bootstrapping work during authentication. For example, loading user account
details from an external system.

This function is called after the user has passed all authentication checks
and is ready to successfully authenticate. This function must return the
authentication dict reguardless of changes to it.

This maybe a coroutine.

Example:

import os, pwd
def my_hook(authenticator, handler, authentication):
 user_data = pwd.getpwnam(authentication['name'])
 spawn_data = {
 'pw_data': user_data
 'gid_list': os.getgrouplist(authentication['name'], user_data.pw_gid)
 }

 if authentication['auth_state'] is None:
 authentication['auth_state'] = {}
 authentication['auth_state']['spawn_data'] = spawn_data

 return authentication

c.Authenticator.post_auth_hook = my_hook

	
refresh_pre_spawn c.DummyAuthenticator.refresh_pre_spawn = Bool(False)

	Force refresh of auth prior to spawn.

This forces refresh_user() to be called prior to launching
a server, to ensure that auth state is up-to-date.

This can be important when e.g. auth tokens that may have expired
are passed to the spawner via environment variables from auth_state.

If refresh_user cannot refresh the user auth data,
launch will fail until the user logs in again.

	
username_map c.DummyAuthenticator.username_map = Dict()

	Dictionary mapping authenticator usernames to JupyterHub users.

Primarily used to normalize OAuth user names to local users.

	
username_pattern c.DummyAuthenticator.username_pattern = Unicode('')

	Regular expression pattern that all valid usernames must match.

If a username does not match the pattern specified here, authentication will not be attempted.

If not set, allow any username.

	
whitelist c.DummyAuthenticator.whitelist = Set()

	Deprecated, use Authenticator.allowed_users

 Spawners

Spawners

Module: jupyterhub.spawner

Contains base Spawner class & default implementation

Spawner

	
class jupyterhub.spawner.Spawner(**kwargs)

	Base class for spawning single-user notebook servers.

Subclass this, and override the following methods:

	load_state

	get_state

	start

	stop

	poll

As JupyterHub supports multiple users, an instance of the Spawner subclass
is created for each user. If there are 20 JupyterHub users, there will be 20
instances of the subclass.

	
args c.Spawner.args = List()

	Extra arguments to be passed to the single-user server.

Some spawners allow shell-style expansion here, allowing you to use environment variables here.
Most, including the default, do not. Consult the documentation for your spawner to verify!

	
auth_state_hook c.Spawner.auth_state_hook = Any(None)

	An optional hook function that you can implement to pass auth_state
to the spawner after it has been initialized but before it starts.
The auth_state dictionary may be set by the .authenticate()
method of the authenticator. This hook enables you to pass some
or all of that information to your spawner.

Example:

def userdata_hook(spawner, auth_state):
 spawner.userdata = auth_state["userdata"]

c.Spawner.auth_state_hook = userdata_hook

	
cmd c.Spawner.cmd = Command()

	The command used for starting the single-user server.

Provide either a string or a list containing the path to the startup script command. Extra arguments,
other than this path, should be provided via args.

This is usually set if you want to start the single-user server in a different python
environment (with virtualenv/conda) than JupyterHub itself.

Some spawners allow shell-style expansion here, allowing you to use environment variables.
Most, including the default, do not. Consult the documentation for your spawner to verify!

	
consecutive_failure_limit c.Spawner.consecutive_failure_limit = Int(0)

	Maximum number of consecutive failures to allow before
shutting down JupyterHub.

This helps JupyterHub recover from a certain class of problem preventing launch
in contexts where the Hub is automatically restarted (e.g. systemd, docker, kubernetes).

A limit of 0 means no limit and consecutive failures will not be tracked.

	
cpu_guarantee c.Spawner.cpu_guarantee = Float(None)

	Minimum number of cpu-cores a single-user notebook server is guaranteed to have available.

If this value is set to 0.5, allows use of 50% of one CPU.
If this value is set to 2, allows use of up to 2 CPUs.

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
cpu_limit c.Spawner.cpu_limit = Float(None)

	Maximum number of cpu-cores a single-user notebook server is allowed to use.

If this value is set to 0.5, allows use of 50% of one CPU.
If this value is set to 2, allows use of up to 2 CPUs.

The single-user notebook server will never be scheduled by the kernel to
use more cpu-cores than this. There is no guarantee that it can
access this many cpu-cores.

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
async create_certs()

	Create and set ownership for the certs to be used for internal ssl

	Keyword Arguments

	
	alt_names (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of alternative names to identify the

	see (server by,) –

	https – //en.wikipedia.org/wiki/Subject_Alternative_Name

	override – override the default_names with the provided alt_names

	Returns

	Path to cert files and CA

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

This method creates certs for use with the singleuser notebook. It
enables SSL and ensures that the notebook can perform bi-directional
SSL auth with the hub (verification based on CA).

If the singleuser host has a name or ip other than localhost,
an appropriate alternative name(s) must be passed for ssl verification
by the hub to work. For example, for Jupyter hosts with an IP of
10.10.10.10 or DNS name of jupyter.example.com, this would be:

alt_names=[“IP:10.10.10.10”]
alt_names=[“DNS:jupyter.example.com”]

respectively. The list can contain both the IP and DNS names to refer
to the host by either IP or DNS name (note the default_names below).

	
debug c.Spawner.debug = Bool(False)

	Enable debug-logging of the single-user server

	
default_url c.Spawner.default_url = Unicode('')

	The URL the single-user server should start in.

{username} will be expanded to the user’s username

Example uses:

	You can set notebook_dir to / and default_url to /tree/home/{username} to allow people to
navigate the whole filesystem from their notebook server, but still start in their home directory.

	Start with /notebooks instead of /tree if default_url points to a notebook instead of a directory.

	You can set this to /lab to have JupyterLab start by default, rather than Jupyter Notebook.

	
disable_user_config c.Spawner.disable_user_config = Bool(False)

	Disable per-user configuration of single-user servers.

When starting the user’s single-user server, any config file found in the user’s $HOME directory
will be ignored.

Note: a user could circumvent this if the user modifies their Python environment, such as when
they have their own conda environments / virtualenvs / containers.

	
env_keep c.Spawner.env_keep = List()

	List of environment variables for the single-user server to inherit from the JupyterHub process.

This list is used to ensure that sensitive information in the JupyterHub process’s environment
(such as CONFIGPROXY_AUTH_TOKEN) is not passed to the single-user server’s process.

	
environment c.Spawner.environment = Dict()

	Extra environment variables to set for the single-user server’s process.

	Environment variables that end up in the single-user server’s process come from 3 sources:
	
	This environment configurable

	The JupyterHub process’ environment variables that are listed in env_keep

	Variables to establish contact between the single-user notebook and the hub (such as JUPYTERHUB_API_TOKEN)

The environment configurable should be set by JupyterHub administrators to add
installation specific environment variables. It is a dict where the key is the name of the environment
variable, and the value can be a string or a callable. If it is a callable, it will be called
with one parameter (the spawner instance), and should return a string fairly quickly (no blocking
operations please!).

Note that the spawner class’ interface is not guaranteed to be exactly same across upgrades,
so if you are using the callable take care to verify it continues to work after upgrades!

Changed in version 1.2: environment from this configuration has highest priority,
allowing override of ‘default’ env variables,
such as JUPYTERHUB_API_URL.

	
format_string(s)

	Render a Python format string

Uses Spawner.template_namespace() to populate format namespace.

	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) – Python format-string to be formatted.

	Returns

	Formatted string, rendered

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_args()

	Return the arguments to be passed after self.cmd

Doesn’t expect shell expansion to happen.

Changed in version 2.0: Prior to 2.0, JupyterHub passed some options such as
ip, port, and default_url to the command-line.
JupyterHub 2.0 no longer builds any CLI args
other than Spawner.cmd and Spawner.args.
All values that come from jupyterhub itself
will be passed via environment variables.

	
get_env()

	Return the environment dict to use for the Spawner.

This applies things like env_keep, anything defined in Spawner.environment,
and adds the API token to the env.

When overriding in subclasses, subclasses must call super().get_env(), extend the
returned dict and return it.

Use this to access the env in Spawner.start to allow extension in subclasses.

	
get_state()

	Save state of spawner into database.

A black box of extra state for custom spawners. The returned value of this is
passed to load_state.

Subclasses should call super().get_state(), augment the state returned from
there, and return that state.

	Returns

	state – a JSONable dict of state

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
http_timeout c.Spawner.http_timeout = Int(30)

	Timeout (in seconds) before giving up on a spawned HTTP server

Once a server has successfully been spawned, this is the amount of time
we wait before assuming that the server is unable to accept
connections.

	
hub_connect_url c.Spawner.hub_connect_url = Unicode(None)

	The URL the single-user server should connect to the Hub.

If the Hub URL set in your JupyterHub config is not reachable
from spawned notebooks, you can set differnt URL by this config.

Is None if you don’t need to change the URL.

	
ip c.Spawner.ip = Unicode('127.0.0.1')

	The IP address (or hostname) the single-user server should listen on.

Usually either ‘127.0.0.1’ (default) or ‘0.0.0.0’.

The JupyterHub proxy implementation should be able to send packets to this interface.

Subclasses which launch remotely or in containers
should override the default to ‘0.0.0.0’.

Changed in version 2.0: Default changed to ‘127.0.0.1’, from ‘’.
In most cases, this does not result in a change in behavior,
as ‘’ was interpreted as ‘unspecified’,
which used the subprocesses’ own default, itself usually ‘127.0.0.1’.

	
mem_guarantee c.Spawner.mem_guarantee = ByteSpecification(None)

	Minimum number of bytes a single-user notebook server is guaranteed to have available.

	Allows the following suffixes:
	
	K -> Kilobytes

	M -> Megabytes

	G -> Gigabytes

	T -> Terabytes

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
mem_limit c.Spawner.mem_limit = ByteSpecification(None)

	Maximum number of bytes a single-user notebook server is allowed to use.

	Allows the following suffixes:
	
	K -> Kilobytes

	M -> Megabytes

	G -> Gigabytes

	T -> Terabytes

If the single user server tries to allocate more memory than this,
it will fail. There is no guarantee that the single-user notebook server
will be able to allocate this much memory - only that it can not
allocate more than this.

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
async move_certs(paths)

	Takes certificate paths and makes them available to the notebook server

	Parameters

	paths (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a list of paths for key, cert, and CA.
These paths will be resolvable and readable by the Hub process,
but not necessarily by the notebook server.

	Returns

	
	a list (potentially altered) of paths for key, cert, and CA.
	These paths should be resolvable and readable by the notebook
server to be launched.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

.move_certs is called after certs for the singleuser notebook have
been created by create_certs.

By default, certs are created in a standard, central location defined
by internal_certs_location. For a local, single-host deployment of
JupyterHub, this should suffice. If, however, singleuser notebooks
are spawned on other hosts, .move_certs should be overridden to move
these files appropriately. This could mean using scp to copy them
to another host, moving them to a volume mounted in a docker container,
or exporting them as a secret in kubernetes.

	
notebook_dir c.Spawner.notebook_dir = Unicode('')

	Path to the notebook directory for the single-user server.

The user sees a file listing of this directory when the notebook interface is started. The
current interface does not easily allow browsing beyond the subdirectories in this directory’s
tree.

~ will be expanded to the home directory of the user, and {username} will be replaced
with the name of the user.

Note that this does not prevent users from accessing files outside of this path! They
can do so with many other means.

	
oauth_roles c.Spawner.oauth_roles = Union()

	Allowed roles for oauth tokens.

This sets the maximum and default roles
assigned to oauth tokens issued by a single-user server’s
oauth client (i.e. tokens stored in browsers after authenticating with the server),
defining what actions the server can take on behalf of logged-in users.

Default is an empty list, meaning minimal permissions to identify users,
no actions can be taken on their behalf.

	
options_form c.Spawner.options_form = Union()

	An HTML form for options a user can specify on launching their server.

The surrounding <form> element and the submit button are already provided.

For example:

Set your key:
<input name="key" val="default_key"></input>

Choose a letter:
<select name="letter" multiple="true">
 <option value="A">The letter A</option>
 <option value="B">The letter B</option>
</select>

The data from this form submission will be passed on to your spawner in self.user_options

Instead of a form snippet string, this could also be a callable that takes as one
parameter the current spawner instance and returns a string. The callable will
be called asynchronously if it returns a future, rather than a str. Note that
the interface of the spawner class is not deemed stable across versions,
so using this functionality might cause your JupyterHub upgrades to break.

	
options_from_form c.Spawner.options_from_form = Callable()

	Interpret HTTP form data

Form data will always arrive as a dict of lists of strings.
Override this function to understand single-values, numbers, etc.

This should coerce form data into the structure expected by self.user_options,
which must be a dict, and should be JSON-serializeable,
though it can contain bytes in addition to standard JSON data types.

This method should not have any side effects.
Any handling of user_options should be done in .start()
to ensure consistent behavior across servers
spawned via the API and form submission page.

Instances will receive this data on self.user_options, after passing through this function,
prior to Spawner.start.

Changed in version 1.0: user_options are persisted in the JupyterHub database to be reused
on subsequent spawns if no options are given.
user_options is serialized to JSON as part of this persistence
(with additional support for bytes in case of uploaded file data),
and any non-bytes non-jsonable values will be replaced with None
if the user_options are re-used.

	
async poll()

	Check if the single-user process is running

	Returns

	None if single-user process is running.
Integer exit status (0 if unknown), if it is not running.

State transitions, behavior, and return response:

	If the Spawner has not been initialized (neither loaded state, nor called start),
it should behave as if it is not running (status=0).

	If the Spawner has not finished starting,
it should behave as if it is running (status=None).

Design assumptions about when poll may be called:

	On Hub launch: poll may be called before start when state is loaded on Hub launch.
poll should return exit status 0 (unknown) if the Spawner has not been initialized via
load_state or start.

	If .start() is async: poll may be called during any yielded portions of the start
process. poll should return None when start is yielded, indicating that the start
process has not yet completed.

	
poll_interval c.Spawner.poll_interval = Int(30)

	Interval (in seconds) on which to poll the spawner for single-user server’s status.

At every poll interval, each spawner’s .poll method is called, which checks
if the single-user server is still running. If it isn’t running, then JupyterHub modifies
its own state accordingly and removes appropriate routes from the configurable proxy.

	
port c.Spawner.port = Int(0)

	The port for single-user servers to listen on.

Defaults to 0, which uses a randomly allocated port number each time.

If set to a non-zero value, all Spawners will use the same port,
which only makes sense if each server is on a different address,
e.g. in containers.

New in version 0.7.

	
post_stop_hook c.Spawner.post_stop_hook = Any(None)

	An optional hook function that you can implement to do work after
the spawner stops.

This can be set independent of any concrete spawner implementation.

	
pre_spawn_hook c.Spawner.pre_spawn_hook = Any(None)

	An optional hook function that you can implement to do some
bootstrapping work before the spawner starts. For example, create a
directory for your user or load initial content.

This can be set independent of any concrete spawner implementation.

This maybe a coroutine.

Example:

from subprocess import check_call
def my_hook(spawner):
 username = spawner.user.name
 check_call(['./examples/bootstrap-script/bootstrap.sh', username])

c.Spawner.pre_spawn_hook = my_hook

	
ssl_alt_names c.Spawner.ssl_alt_names = List()

	List of SSL alt names

May be set in config if all spawners should have the same value(s),
or set at runtime by Spawner that know their names.

	
ssl_alt_names_include_local c.Spawner.ssl_alt_names_include_local = Bool(True)

	Whether to include DNS:localhost, IP:127.0.0.1 in alt names

	
async start()

	Start the single-user server

	Returns

	the (ip, port) where the Hub can connect to the server.

	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int])

Changed in version 0.7: Return ip, port instead of setting on self.user.server directly.

	
start_timeout c.Spawner.start_timeout = Int(60)

	Timeout (in seconds) before giving up on starting of single-user server.

This is the timeout for start to return, not the timeout for the server to respond.
Callers of spawner.start will assume that startup has failed if it takes longer than this.
start should return when the server process is started and its location is known.

	
async stop(now=False)

	Stop the single-user server

If now is False (default), shutdown the server as gracefully as possible,
e.g. starting with SIGINT, then SIGTERM, then SIGKILL.
If now is True, terminate the server immediately.

The coroutine should return when the single-user server process is no longer running.

Must be a coroutine.

	
template_namespace()

	Return the template namespace for format-string formatting.

Currently used on default_url and notebook_dir.

Subclasses may add items to the available namespace.

The default implementation includes:

{
 'username': user.name,
 'base_url': users_base_url,
}

	Returns

	namespace for string formatting.

	Return type

	ns (dict [https://docs.python.org/3/library/stdtypes.html#dict])

LocalProcessSpawner

	
class jupyterhub.spawner.LocalProcessSpawner(**kwargs)

	A Spawner that uses subprocess.Popen to start single-user servers as local processes.

Requires local UNIX users matching the authenticated users to exist.
Does not work on Windows.

This is the default spawner for JupyterHub.

Note: This spawner does not implement CPU / memory guarantees and limits.

	
args c.LocalProcessSpawner.args = List()

	Extra arguments to be passed to the single-user server.

Some spawners allow shell-style expansion here, allowing you to use environment variables here.
Most, including the default, do not. Consult the documentation for your spawner to verify!

	
auth_state_hook c.LocalProcessSpawner.auth_state_hook = Any(None)

	An optional hook function that you can implement to pass auth_state
to the spawner after it has been initialized but before it starts.
The auth_state dictionary may be set by the .authenticate()
method of the authenticator. This hook enables you to pass some
or all of that information to your spawner.

Example:

def userdata_hook(spawner, auth_state):
 spawner.userdata = auth_state["userdata"]

c.Spawner.auth_state_hook = userdata_hook

	
cmd c.LocalProcessSpawner.cmd = Command()

	The command used for starting the single-user server.

Provide either a string or a list containing the path to the startup script command. Extra arguments,
other than this path, should be provided via args.

This is usually set if you want to start the single-user server in a different python
environment (with virtualenv/conda) than JupyterHub itself.

Some spawners allow shell-style expansion here, allowing you to use environment variables.
Most, including the default, do not. Consult the documentation for your spawner to verify!

	
consecutive_failure_limit c.LocalProcessSpawner.consecutive_failure_limit = Int(0)

	Maximum number of consecutive failures to allow before
shutting down JupyterHub.

This helps JupyterHub recover from a certain class of problem preventing launch
in contexts where the Hub is automatically restarted (e.g. systemd, docker, kubernetes).

A limit of 0 means no limit and consecutive failures will not be tracked.

	
cpu_guarantee c.LocalProcessSpawner.cpu_guarantee = Float(None)

	Minimum number of cpu-cores a single-user notebook server is guaranteed to have available.

If this value is set to 0.5, allows use of 50% of one CPU.
If this value is set to 2, allows use of up to 2 CPUs.

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
cpu_limit c.LocalProcessSpawner.cpu_limit = Float(None)

	Maximum number of cpu-cores a single-user notebook server is allowed to use.

If this value is set to 0.5, allows use of 50% of one CPU.
If this value is set to 2, allows use of up to 2 CPUs.

The single-user notebook server will never be scheduled by the kernel to
use more cpu-cores than this. There is no guarantee that it can
access this many cpu-cores.

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
debug c.LocalProcessSpawner.debug = Bool(False)

	Enable debug-logging of the single-user server

	
default_url c.LocalProcessSpawner.default_url = Unicode('')

	The URL the single-user server should start in.

{username} will be expanded to the user’s username

Example uses:

	You can set notebook_dir to / and default_url to /tree/home/{username} to allow people to
navigate the whole filesystem from their notebook server, but still start in their home directory.

	Start with /notebooks instead of /tree if default_url points to a notebook instead of a directory.

	You can set this to /lab to have JupyterLab start by default, rather than Jupyter Notebook.

	
disable_user_config c.LocalProcessSpawner.disable_user_config = Bool(False)

	Disable per-user configuration of single-user servers.

When starting the user’s single-user server, any config file found in the user’s $HOME directory
will be ignored.

Note: a user could circumvent this if the user modifies their Python environment, such as when
they have their own conda environments / virtualenvs / containers.

	
env_keep c.LocalProcessSpawner.env_keep = List()

	List of environment variables for the single-user server to inherit from the JupyterHub process.

This list is used to ensure that sensitive information in the JupyterHub process’s environment
(such as CONFIGPROXY_AUTH_TOKEN) is not passed to the single-user server’s process.

	
environment c.LocalProcessSpawner.environment = Dict()

	Extra environment variables to set for the single-user server’s process.

	Environment variables that end up in the single-user server’s process come from 3 sources:
	
	This environment configurable

	The JupyterHub process’ environment variables that are listed in env_keep

	Variables to establish contact between the single-user notebook and the hub (such as JUPYTERHUB_API_TOKEN)

The environment configurable should be set by JupyterHub administrators to add
installation specific environment variables. It is a dict where the key is the name of the environment
variable, and the value can be a string or a callable. If it is a callable, it will be called
with one parameter (the spawner instance), and should return a string fairly quickly (no blocking
operations please!).

Note that the spawner class’ interface is not guaranteed to be exactly same across upgrades,
so if you are using the callable take care to verify it continues to work after upgrades!

Changed in version 1.2: environment from this configuration has highest priority,
allowing override of ‘default’ env variables,
such as JUPYTERHUB_API_URL.

	
http_timeout c.LocalProcessSpawner.http_timeout = Int(30)

	Timeout (in seconds) before giving up on a spawned HTTP server

Once a server has successfully been spawned, this is the amount of time
we wait before assuming that the server is unable to accept
connections.

	
hub_connect_url c.LocalProcessSpawner.hub_connect_url = Unicode(None)

	The URL the single-user server should connect to the Hub.

If the Hub URL set in your JupyterHub config is not reachable
from spawned notebooks, you can set differnt URL by this config.

Is None if you don’t need to change the URL.

	
interrupt_timeout c.LocalProcessSpawner.interrupt_timeout = Int(10)

	Seconds to wait for single-user server process to halt after SIGINT.

If the process has not exited cleanly after this many seconds, a SIGTERM is sent.

	
ip c.LocalProcessSpawner.ip = Unicode('127.0.0.1')

	The IP address (or hostname) the single-user server should listen on.

Usually either ‘127.0.0.1’ (default) or ‘0.0.0.0’.

The JupyterHub proxy implementation should be able to send packets to this interface.

Subclasses which launch remotely or in containers
should override the default to ‘0.0.0.0’.

Changed in version 2.0: Default changed to ‘127.0.0.1’, from ‘’.
In most cases, this does not result in a change in behavior,
as ‘’ was interpreted as ‘unspecified’,
which used the subprocesses’ own default, itself usually ‘127.0.0.1’.

	
kill_timeout c.LocalProcessSpawner.kill_timeout = Int(5)

	Seconds to wait for process to halt after SIGKILL before giving up.

If the process does not exit cleanly after this many seconds of SIGKILL, it becomes a zombie
process. The hub process will log a warning and then give up.

	
mem_guarantee c.LocalProcessSpawner.mem_guarantee = ByteSpecification(None)

	Minimum number of bytes a single-user notebook server is guaranteed to have available.

	Allows the following suffixes:
	
	K -> Kilobytes

	M -> Megabytes

	G -> Gigabytes

	T -> Terabytes

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
mem_limit c.LocalProcessSpawner.mem_limit = ByteSpecification(None)

	Maximum number of bytes a single-user notebook server is allowed to use.

	Allows the following suffixes:
	
	K -> Kilobytes

	M -> Megabytes

	G -> Gigabytes

	T -> Terabytes

If the single user server tries to allocate more memory than this,
it will fail. There is no guarantee that the single-user notebook server
will be able to allocate this much memory - only that it can not
allocate more than this.

This is a configuration setting. Your spawner must implement support
for the limit to work. The default spawner, LocalProcessSpawner,
does not implement this support. A custom spawner must add
support for this setting for it to be enforced.

	
notebook_dir c.LocalProcessSpawner.notebook_dir = Unicode('')

	Path to the notebook directory for the single-user server.

The user sees a file listing of this directory when the notebook interface is started. The
current interface does not easily allow browsing beyond the subdirectories in this directory’s
tree.

~ will be expanded to the home directory of the user, and {username} will be replaced
with the name of the user.

Note that this does not prevent users from accessing files outside of this path! They
can do so with many other means.

	
oauth_roles c.LocalProcessSpawner.oauth_roles = Union()

	Allowed roles for oauth tokens.

This sets the maximum and default roles
assigned to oauth tokens issued by a single-user server’s
oauth client (i.e. tokens stored in browsers after authenticating with the server),
defining what actions the server can take on behalf of logged-in users.

Default is an empty list, meaning minimal permissions to identify users,
no actions can be taken on their behalf.

	
options_form c.LocalProcessSpawner.options_form = Union()

	An HTML form for options a user can specify on launching their server.

The surrounding <form> element and the submit button are already provided.

For example:

Set your key:
<input name="key" val="default_key"></input>

Choose a letter:
<select name="letter" multiple="true">
 <option value="A">The letter A</option>
 <option value="B">The letter B</option>
</select>

The data from this form submission will be passed on to your spawner in self.user_options

Instead of a form snippet string, this could also be a callable that takes as one
parameter the current spawner instance and returns a string. The callable will
be called asynchronously if it returns a future, rather than a str. Note that
the interface of the spawner class is not deemed stable across versions,
so using this functionality might cause your JupyterHub upgrades to break.

	
options_from_form c.LocalProcessSpawner.options_from_form = Callable()

	Interpret HTTP form data

Form data will always arrive as a dict of lists of strings.
Override this function to understand single-values, numbers, etc.

This should coerce form data into the structure expected by self.user_options,
which must be a dict, and should be JSON-serializeable,
though it can contain bytes in addition to standard JSON data types.

This method should not have any side effects.
Any handling of user_options should be done in .start()
to ensure consistent behavior across servers
spawned via the API and form submission page.

Instances will receive this data on self.user_options, after passing through this function,
prior to Spawner.start.

Changed in version 1.0: user_options are persisted in the JupyterHub database to be reused
on subsequent spawns if no options are given.
user_options is serialized to JSON as part of this persistence
(with additional support for bytes in case of uploaded file data),
and any non-bytes non-jsonable values will be replaced with None
if the user_options are re-used.

	
poll_interval c.LocalProcessSpawner.poll_interval = Int(30)

	Interval (in seconds) on which to poll the spawner for single-user server’s status.

At every poll interval, each spawner’s .poll method is called, which checks
if the single-user server is still running. If it isn’t running, then JupyterHub modifies
its own state accordingly and removes appropriate routes from the configurable proxy.

	
popen_kwargs c.LocalProcessSpawner.popen_kwargs = Dict()

	Extra keyword arguments to pass to Popen

when spawning single-user servers.

For example:

popen_kwargs = dict(shell=True)

	
port c.LocalProcessSpawner.port = Int(0)

	The port for single-user servers to listen on.

Defaults to 0, which uses a randomly allocated port number each time.

If set to a non-zero value, all Spawners will use the same port,
which only makes sense if each server is on a different address,
e.g. in containers.

New in version 0.7.

	
post_stop_hook c.LocalProcessSpawner.post_stop_hook = Any(None)

	An optional hook function that you can implement to do work after
the spawner stops.

This can be set independent of any concrete spawner implementation.

	
pre_spawn_hook c.LocalProcessSpawner.pre_spawn_hook = Any(None)

	An optional hook function that you can implement to do some
bootstrapping work before the spawner starts. For example, create a
directory for your user or load initial content.

This can be set independent of any concrete spawner implementation.

This maybe a coroutine.

Example:

from subprocess import check_call
def my_hook(spawner):
 username = spawner.user.name
 check_call(['./examples/bootstrap-script/bootstrap.sh', username])

c.Spawner.pre_spawn_hook = my_hook

	
shell_cmd c.LocalProcessSpawner.shell_cmd = Command()

	Specify a shell command to launch.

The single-user command will be appended to this list,
so it sould end with -c (for bash) or equivalent.

For example:

c.LocalProcessSpawner.shell_cmd = ['bash', '-l', '-c']

to launch with a bash login shell, which would set up the user’s own complete environment.

Warning

Using shell_cmd gives users control over PATH, etc.,
which could change what the jupyterhub-singleuser launch command does.
Only use this for trusted users.

	
ssl_alt_names c.LocalProcessSpawner.ssl_alt_names = List()

	List of SSL alt names

May be set in config if all spawners should have the same value(s),
or set at runtime by Spawner that know their names.

	
ssl_alt_names_include_local c.LocalProcessSpawner.ssl_alt_names_include_local = Bool(True)

	Whether to include DNS:localhost, IP:127.0.0.1 in alt names

	
start_timeout c.LocalProcessSpawner.start_timeout = Int(60)

	Timeout (in seconds) before giving up on starting of single-user server.

This is the timeout for start to return, not the timeout for the server to respond.
Callers of spawner.start will assume that startup has failed if it takes longer than this.
start should return when the server process is started and its location is known.

	
term_timeout c.LocalProcessSpawner.term_timeout = Int(5)

	Seconds to wait for single-user server process to halt after SIGTERM.

If the process does not exit cleanly after this many seconds of SIGTERM, a SIGKILL is sent.

 Proxies

Proxies

Module: jupyterhub.proxy

API for JupyterHub’s proxy.

Custom proxy implementations can subclass Proxy
and register in JupyterHub config:

from mymodule import MyProxy
c.JupyterHub.proxy_class = MyProxy

Route Specification:

	A routespec is a URL prefix ([host]/path/), e.g.
‘host.tld/path/’ for host-based routing or ‘/path/’ for default routing.

	Route paths should be normalized to always start and end with ‘/’

Proxy

	
class jupyterhub.proxy.Proxy(**kwargs)

	Base class for configurable proxies that JupyterHub can use.

A proxy implementation should subclass this and must define the following methods:

	get_all_routes() return a dictionary of all JupyterHub-related routes

	add_route() adds a route

	delete_route() deletes a route

In addition to these, the following method(s) may need to be implemented:

	start() start the proxy, if it should be launched by the Hub
instead of externally managed.
If the proxy is externally managed, it should set should_start to False.

	stop() stop the proxy. Only used if start() is also used.

And the following method(s) are optional, but can be provided:

	get_route() gets a single route.
There is a default implementation that extracts data from get_all_routes(),
but implementations may choose to provide a more efficient implementation
of fetching a single route.

	
async add_all_services(service_dict)

	Update the proxy table from the database.

Used when loading up a new proxy.

	
async add_all_users(user_dict)

	Update the proxy table from the database.

Used when loading up a new proxy.

	
add_hub_route(hub)

	Add the default route for the Hub

	
async add_route(routespec, target, data)

	Add a route to the proxy.

Subclasses must define this method

	Parameters

	
	routespec (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URL prefix ([host]/path/) for which this route will be matched,
e.g. host.name/path/

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A full URL that will be the target of this route.

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A JSONable dict that will be associated with this route, and will
be returned when retrieving information about this route.

Will raise an appropriate Exception (FIXME: find what?) if the route could
not be added.

The proxy implementation should also have a way to associate the fact that a
route came from JupyterHub.

	
async add_service(service, client=None)

	Add a service’s server to the proxy table.

	
async add_user(user, server_name='', client=None)

	Add a user’s server to the proxy table.

	
async check_routes(user_dict, service_dict, routes=None)

	Check that all users are properly routed on the proxy.

	
async delete_route(routespec)

	Delete a route with a given routespec if it exists.

Subclasses must define this method

	
async delete_service(service, client=None)

	Remove a service’s server from the proxy table.

	
async delete_user(user, server_name='')

	Remove a user’s server from the proxy table.

	
extra_routes c.Proxy.extra_routes = Dict()

	Additional routes to be maintained in the proxy.

A dictionary with a route specification as key, and
a URL as target. The hub will ensure this route is present
in the proxy.

If the hub is running in host based mode (with
JupyterHub.subdomain_host set), the routespec must
have a domain component (example.com/my-url/). If the
hub is not running in host based mode, the routespec
must not have a domain component (/my-url/).

Helpful when the hub is running in API-only mode.

	
async get_all_routes()

	Fetch and return all the routes associated by JupyterHub from the
proxy.

Subclasses must define this method

Should return a dictionary of routes, where the keys are
routespecs and each value is a dict of the form:

{
 'routespec': the route specification ([host]/path/)
 'target': the target host URL (proto://host) for this route
 'data': the attached data dict for this route (as specified in add_route)
}

	
async get_route(routespec)

	Return the route info for a given routespec.

	Parameters

	routespec (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URI that was used to add this route,
e.g. host.tld/path/

	Returns

	dict with the following keys:

'routespec': The normalized route specification passed in to add_route
 ([host]/path/)
'target': The target host for this route (proto://host)
'data': The arbitrary data dict that was passed in by JupyterHub when adding this
 route.

None: if there are no routes matching the given routespec

	Return type

	result (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
should_start c.Proxy.should_start = Bool(True)

	Should the Hub start the proxy

If True, the Hub will start the proxy and stop it.
Set to False if the proxy is managed externally,
such as by systemd, docker, or another service manager.

	
start()

	Start the proxy.

Will be called during startup if should_start is True.

Subclasses must define this method
if the proxy is to be started by the Hub

	
stop()

	Stop the proxy.

Will be called during teardown if should_start is True.

Subclasses must define this method
if the proxy is to be started by the Hub

	
validate_routespec(routespec)

	Validate a routespec

	Checks host value vs host-based routing.

	Ensures trailing slash on path.

ConfigurableHTTPProxy

	
class jupyterhub.proxy.ConfigurableHTTPProxy(**kwargs)

	Proxy implementation for the default configurable-http-proxy.

This is the default proxy implementation
for running the nodejs proxy configurable-http-proxy.

If the proxy should not be run as a subprocess of the Hub,
(e.g. in a separate container),
set:

c.ConfigurableHTTPProxy.should_start = False

	
api_url c.ConfigurableHTTPProxy.api_url = Unicode('')

	The ip (or hostname) of the proxy’s API endpoint

	
auth_token c.ConfigurableHTTPProxy.auth_token = Unicode('')

	The Proxy auth token

Loaded from the CONFIGPROXY_AUTH_TOKEN env variable by default.

	
check_running_interval c.ConfigurableHTTPProxy.check_running_interval = Int(5)

	Interval (in seconds) at which to check if the proxy is running.

	
command c.ConfigurableHTTPProxy.command = Command()

	The command to start the proxy

	
concurrency c.ConfigurableHTTPProxy.concurrency = Int(10)

	The number of requests allowed to be concurrently outstanding to the proxy

Limiting this number avoids potential timeout errors
by sending too many requests to update the proxy at once

	
debug c.ConfigurableHTTPProxy.debug = Bool(False)

	Add debug-level logging to the Proxy.

	
extra_routes c.ConfigurableHTTPProxy.extra_routes = Dict()

	Additional routes to be maintained in the proxy.

A dictionary with a route specification as key, and
a URL as target. The hub will ensure this route is present
in the proxy.

If the hub is running in host based mode (with
JupyterHub.subdomain_host set), the routespec must
have a domain component (example.com/my-url/). If the
hub is not running in host based mode, the routespec
must not have a domain component (/my-url/).

Helpful when the hub is running in API-only mode.

	
pid_file c.ConfigurableHTTPProxy.pid_file = Unicode('jupyterhub-proxy.pid')

	File in which to write the PID of the proxy process.

	
should_start c.ConfigurableHTTPProxy.should_start = Bool(True)

	Should the Hub start the proxy

If True, the Hub will start the proxy and stop it.
Set to False if the proxy is managed externally,
such as by systemd, docker, or another service manager.

 Users

Users

Module: jupyterhub.user

UserDict

	
class jupyterhub.user.UserDict(db_factory, settings)

	Like defaultdict, but for users

Users can be retrieved by:

	integer database id

	orm.User object

	username str

A User wrapper object is always returned.

This dict contains at least all active users,
but not necessarily all users in the database.

Checking key in userdict returns whether
an item is already in the cache,
not whether it is in the database.

Changed in version 1.2: 'username' in userdict pattern is now supported

	
add(orm_user)

	Add a user to the UserDict

	
count_active_users()

	Count the number of user servers that are active/pending/ready

Returns dict with counts of active/pending/ready servers

	
delete(key)

	Delete a user from the cache and the database

	
get(key, default=None)

	Retrieve a User object if it can be found, else default

Lookup can be by User object, id, or name

Changed in version 1.2: get() accesses the database instead of just the cache by integer id,
so is equivalent to catching KeyErrors on attempted lookup.

User

	
class jupyterhub.user.User(orm_user, settings=None, db=None)

	High-level wrapper around an orm.User object

	
name

	The user’s name

	
server

	The user’s Server data object if running, None otherwise.
Has ip, port attributes.

	
spawner

	The user’s Spawner instance.

	
property escaped_name

	My name, escaped for use in URLs, cookies, etc.

 Services

Services

Module: jupyterhub.services.service

A service is a process that talks to JupyterHub.

	Types of services:
	
	Managed:
	
	managed by JupyterHub (always subprocess, no custom Spawners)

	always a long-running process

	managed services are restarted automatically if they exit unexpectedly

	Unmanaged:
	
	managed by external service (docker, systemd, etc.)

	do not need to be long-running processes, or processes at all

	URL: needs a route added to the proxy.
	
	Public route will always be /services/service-name

	url specified in config

	if port is 0, Hub will select a port

	API access:
	
	admin: tokens will have admin-access to the API

	not admin: tokens will only have non-admin access
(not much they can do other than defer to Hub for auth)

An externally managed service running on a URL:

{
 'name': 'my-service',
 'url': 'https://host:8888',
 'admin': True,
 'api_token': 'super-secret',
}

A hub-managed service with no URL:

{
 'name': 'cull-idle',
 'command': ['python', '/path/to/cull-idle']
 'admin': True,
}

Service

	
class jupyterhub.services.service.Service(**kwargs)

	An object wrapping a service specification for Hub API consumers.

A service has inputs:

	
	name: str
	the name of the service

	
	admin: bool(False)
	whether the service should have administrative privileges

	
	url: str (None)
	The URL where the service is/should be.
If specified, the service will be added to the proxy at /services/:name

	
	oauth_no_confirm: bool(False)
	Whether this service should be allowed to complete oauth
with logged-in users without prompting for confirmation.

If a service is to be managed by the Hub, it has a few extra options:

	
	command: (str/Popen list)
	Command for JupyterHub to spawn the service.
Only use this if the service should be a subprocess.
If command is not specified, it is assumed to be managed
by a

	
	environment: dict
	Additional environment variables for the service.

	
	user: str
	The name of a system user to become.
If unspecified, run as the same user as the Hub.

	
property kind

	The name of the kind of service as a string

	‘managed’ for managed services

	‘external’ for external services

	
property managed

	Am I managed by the Hub?

 Services Authentication

Services Authentication

Module: jupyterhub.services.auth

Authenticating services with JupyterHub.

Tokens are sent to the Hub for verification.
The Hub replies with a JSON model describing the authenticated user.

This contains two levels of authentication:

	HubOAuth - Use OAuth 2 to authenticate browsers with the Hub.
This should be used for any service that should respond to browser requests
(i.e. most services).

	HubAuth - token-only authentication, for a service that only need to handle token-authenticated API requests

The Auth classes (HubAuth, HubOAuth)
can be used in any application, even outside tornado.
They contain reference implementations of talking to the Hub API
to resolve a token to a user.

The Authenticated classes (HubAuthenticated, HubOAuthenticated)
are mixins for tornado handlers that should authenticate with the Hub.

If you are using OAuth, you will also need to register an oauth callback handler to complete the oauth process.
A tornado implementation is provided in HubOAuthCallbackHandler.

HubAuth

	
class jupyterhub.services.auth.HubAuth(**kwargs)

	A class for authenticating with JupyterHub

This can be used by any application.

Use this base class only for direct, token-authenticated applications
(web APIs).
For applications that support direct visits from browsers,
use HubOAuth to enable OAuth redirect-based authentication.

If using tornado, use via HubAuthenticated mixin.
If using manually, use the .user_for_token(token_value) method
to identify the user owning a given token.

The following config must be set:

	api_token (token for authenticating with JupyterHub API),
fetched from the JUPYTERHUB_API_TOKEN env by default.

The following config MAY be set:

	api_url: the base URL of the Hub’s internal API,
fetched from JUPYTERHUB_API_URL by default.

	cookie_cache_max_age: the number of seconds responses
from the Hub should be cached.

	login_url (the public /hub/login URL of the Hub).

	
api_token c.HubAuth.api_token = Unicode('')

	API key for accessing Hub API.

Default: $JUPYTERHUB_API_TOKEN

Loaded from services configuration in jupyterhub_config.
Will be auto-generated for hub-managed services.

	
api_url c.HubAuth.api_url = Unicode('http://127.0.0.1:8081/hub/api')

	The base API URL of the Hub.

Typically http://hub-ip:hub-port/hub/api
Default: $JUPYTERHUB_API_URL

	
base_url c.HubAuth.base_url = Unicode('/')

	The base URL prefix of this application

e.g. /services/service-name/ or /user/name/

Default: get from JUPYTERHUB_SERVICE_PREFIX

	
cache_max_age c.HubAuth.cache_max_age = Int(300)

	The maximum time (in seconds) to cache the Hub’s responses for authentication.

A larger value reduces load on the Hub and occasional response lag.
A smaller value reduces propagation time of changes on the Hub (rare).

Default: 300 (five minutes)

	
certfile c.HubAuth.certfile = Unicode('')

	The ssl cert to use for requests

Use with keyfile

	
check_scopes(required_scopes, user)

	Check whether the user has required scope(s)

	
client_ca c.HubAuth.client_ca = Unicode('')

	The ssl certificate authority to use to verify requests

Use with keyfile and certfile

	
cookie_options c.HubAuth.cookie_options = Dict()

	Additional options to pass when setting cookies.

Can include things like expires_days=None for session-expiry
or secure=True if served on HTTPS and default HTTPS discovery fails
(e.g. behind some proxies).

	
get_session_id(handler)

	Get the jupyterhub session id

from the jupyterhub-session-id cookie.

	
get_token(handler)

	Get the user token from a request

	in URL parameters: ?token=<token>

	in header: Authorization: token <token>

	
get_user(handler)

	Get the Hub user for a given tornado handler.

Checks cookie with the Hub to identify the current user.

	Parameters

	handler (tornado.web.RequestHandler [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler]) – the current request handler

	Returns

	The user model, if a user is identified, None if authentication fails.

The ‘name’ field contains the user’s name.

	Return type

	user_model (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
hub_host c.HubAuth.hub_host = Unicode('')

	The public host of JupyterHub

Only used if JupyterHub is spreading servers across subdomains.

	
hub_prefix c.HubAuth.hub_prefix = Unicode('/hub/')

	The URL prefix for the Hub itself.

Typically /hub/
Default: $JUPYTERHUB_BASE_URL

	
keyfile c.HubAuth.keyfile = Unicode('')

	The ssl key to use for requests

Use with certfile

	
login_url c.HubAuth.login_url = Unicode('/hub/login')

	The login URL to use

Typically /hub/login

	
oauth_scopes c.HubAuth.oauth_scopes = Set()

	OAuth scopes to use for allowing access.

Get from $JUPYTERHUB_OAUTH_SCOPES by default.

	
user_for_cookie(encrypted_cookie, use_cache=True, session_id='')

	Deprecated and removed. Use HubOAuth to authenticate browsers.

	
user_for_token(token, use_cache=True, session_id='')

	Ask the Hub to identify the user for a given token.

	Parameters

	
	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – the token

	use_cache (bool [https://docs.python.org/3/library/functions.html#bool]) – Specify use_cache=False to skip cached cookie values (default: True)

	Returns

	The user model, if a user is identified, None if authentication fails.

The ‘name’ field contains the user’s name.

	Return type

	user_model (dict [https://docs.python.org/3/library/stdtypes.html#dict])

HubOAuth

	
class jupyterhub.services.auth.HubOAuth(**kwargs)

	HubAuth using OAuth for login instead of cookies set by the Hub.

Use this class if you want users to be able to visit your service with a browser.
They will be authenticated via OAuth with the Hub.

	
api_token c.HubOAuth.api_token = Unicode('')

	API key for accessing Hub API.

Default: $JUPYTERHUB_API_TOKEN

Loaded from services configuration in jupyterhub_config.
Will be auto-generated for hub-managed services.

	
api_url c.HubOAuth.api_url = Unicode('http://127.0.0.1:8081/hub/api')

	The base API URL of the Hub.

Typically http://hub-ip:hub-port/hub/api
Default: $JUPYTERHUB_API_URL

	
base_url c.HubOAuth.base_url = Unicode('/')

	The base URL prefix of this application

e.g. /services/service-name/ or /user/name/

Default: get from JUPYTERHUB_SERVICE_PREFIX

	
cache_max_age c.HubOAuth.cache_max_age = Int(300)

	The maximum time (in seconds) to cache the Hub’s responses for authentication.

A larger value reduces load on the Hub and occasional response lag.
A smaller value reduces propagation time of changes on the Hub (rare).

Default: 300 (five minutes)

	
certfile c.HubOAuth.certfile = Unicode('')

	The ssl cert to use for requests

Use with keyfile

	
clear_cookie(handler)

	Clear the OAuth cookie

	
client_ca c.HubOAuth.client_ca = Unicode('')

	The ssl certificate authority to use to verify requests

Use with keyfile and certfile

	
property cookie_name

	Use OAuth client_id for cookie name

because we don’t want to use the same cookie name
across OAuth clients.

	
cookie_options c.HubOAuth.cookie_options = Dict()

	Additional options to pass when setting cookies.

Can include things like expires_days=None for session-expiry
or secure=True if served on HTTPS and default HTTPS discovery fails
(e.g. behind some proxies).

	
generate_state(next_url=None, **extra_state)

	Generate a state string, given a next_url redirect target

	Parameters

	next_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL of the page to redirect to on successful login.

	Returns

	state (str)

	Return type

	The base64-encoded state string.

	
get_next_url(b64_state='')

	Get the next_url for redirection, given an encoded OAuth state

	
get_state_cookie_name(b64_state='')

	Get the cookie name for oauth state, given an encoded OAuth state

Cookie name is stored in the state itself because the cookie name
is randomized to deal with races between concurrent oauth sequences.

	
hub_host c.HubOAuth.hub_host = Unicode('')

	The public host of JupyterHub

Only used if JupyterHub is spreading servers across subdomains.

	
hub_prefix c.HubOAuth.hub_prefix = Unicode('/hub/')

	The URL prefix for the Hub itself.

Typically /hub/
Default: $JUPYTERHUB_BASE_URL

	
keyfile c.HubOAuth.keyfile = Unicode('')

	The ssl key to use for requests

Use with certfile

	
login_url c.HubOAuth.login_url = Unicode('/hub/login')

	The login URL to use

Typically /hub/login

	
oauth_authorization_url c.HubOAuth.oauth_authorization_url = Unicode('/hub/api/oauth2/authorize')

	The URL to redirect to when starting the OAuth process

	
oauth_client_id c.HubOAuth.oauth_client_id = Unicode('')

	The OAuth client ID for this application.

Use JUPYTERHUB_CLIENT_ID by default.

	
oauth_redirect_uri c.HubOAuth.oauth_redirect_uri = Unicode('')

	OAuth redirect URI

Should generally be /base_url/oauth_callback

	
oauth_scopes c.HubOAuth.oauth_scopes = Set()

	OAuth scopes to use for allowing access.

Get from $JUPYTERHUB_OAUTH_SCOPES by default.

	
oauth_token_url c.HubOAuth.oauth_token_url = Unicode('')

	The URL for requesting an OAuth token from JupyterHub

	
set_cookie(handler, access_token)

	Set a cookie recording OAuth result

	
set_state_cookie(handler, next_url=None)

	Generate an OAuth state and store it in a cookie

	Parameters

	
	handler (RequestHandler) – A tornado RequestHandler

	next_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The page to redirect to on successful login

	Returns

	state – The OAuth state that has been stored in the cookie (url safe, base64-encoded)

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property state_cookie_name

	The cookie name for storing OAuth state

This cookie is only live for the duration of the OAuth handshake.

	
token_for_code(code)

	Get token for OAuth temporary code

This is the last step of OAuth login.
Should be called in OAuth Callback handler.

	Parameters

	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – oauth code for finishing OAuth login

	Returns

	JupyterHub API Token

	Return type

	token (str [https://docs.python.org/3/library/stdtypes.html#str])

HubAuthenticated

	
class jupyterhub.services.auth.HubAuthenticated

	Mixin for tornado handlers that are authenticated with JupyterHub

A handler that mixes this in must have the following attributes/properties:

	.hub_auth: A HubAuth instance

	.hub_scopes: A set of JupyterHub 2.0 OAuth scopes to allow.
Default comes from .hub_auth.oauth_scopes,
which in turn is set by $JUPYTERHUB_OAUTH_SCOPES
Default values include:
- ‘access:services’, ‘access:services!service={service_name}’ for services
- ‘access:servers’, ‘access:servers!user={user}’,
‘access:servers!server={user}/{server_name}’
for single-user servers

If hub_scopes is not used (e.g. JupyterHub 1.x),
these additional properties can be used:

	.allow_admin: If True, allow any admin user.
Default: False.

	.hub_users: A set of usernames to allow.
If left unspecified or None, username will not be checked.

	.hub_groups: A set of group names to allow.
If left unspecified or None, groups will not be checked.

	.allow_admin: Is admin user access allowed or not
If left unspecified or False, admin user won’t have an access.

Examples:

class MyHandler(HubAuthenticated, web.RequestHandler):
 def initialize(self, hub_auth):
 self.hub_auth = hub_auth

 @web.authenticated
 def get(self):
 ...

	
property allow_all

	Property indicating that all successfully identified user
or service should be allowed.

	
check_hub_user(model)

	Check whether Hub-authenticated user or service should be allowed.

Returns the input if the user should be allowed, None otherwise.

Override for custom logic in authenticating users.

	Parameters

	user_model (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the user or service model returned from HubAuth

	Returns

	The user model if the user should be allowed, None otherwise.

	Return type

	user_model (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
get_current_user()

	Tornado’s authentication method

	Returns

	The user model, if a user is identified, None if authentication fails.

	Return type

	user_model (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
get_login_url()

	Return the Hub’s login URL

	
hub_auth_class

	alias of jupyterhub.services.auth.HubAuth

	
property hub_scopes

	Set of allowed scopes (use hub_auth.oauth_scopes by default)

HubOAuthenticated

	
class jupyterhub.services.auth.HubOAuthenticated

	Simple subclass of HubAuthenticated using OAuth instead of old shared cookies

HubOAuthCallbackHandler

	
class jupyterhub.services.auth.HubOAuthCallbackHandler(application: tornado.web.Application [https://www.tornadoweb.org/en/stable/web.html#tornado.web.Application], request: tornado.httputil.HTTPServerRequest [https://www.tornadoweb.org/en/stable/httputil.html#tornado.httputil.HTTPServerRequest], **kwargs: Any)

	OAuth Callback handler

Finishes the OAuth flow, setting a cookie to record the user’s info.

Should be registered at SERVICE_PREFIX/oauth_callback

 JupyterHub RBAC

JupyterHub RBAC

Role Based Access Control (RBAC) in JupyterHub serves to provide fine grained control of access to Jupyterhub’s API resources.

RBAC is new in JupyterHub 2.0.

Motivation

The JupyterHub API requires authorization to access its APIs.
This ensures that an arbitrary user, or even an unauthenticated third party, are not allowed to perform such actions.
For instance, the behaviour prior to adoption of RBAC is that creating or deleting users requires admin rights.

The prior system is functional, but lacks flexibility. If your Hub serves a number of users in different groups, you might want to delegate permissions to other users or automate certain processes.
Prior to RBAC, appointing a ‘group-only admin’ or a bot that culls idle servers, requires granting full admin rights to all actions. This poses a risk of the user or service intentionally or unintentionally accessing and modifying any data within the Hub and violates the principle of least privilege [https://en.wikipedia.org/wiki/Principle_of_least_privilege].

To remedy situations like this, JupyterHub is transitioning to an RBAC system. By equipping users, groups and services with roles that supply them with a collection of permissions (scopes), administrators are able to fine-tune which parties are granted access to which resources.

Definitions

Scopes are specific permissions used to evaluate API requests. For example: the API endpoint users/servers, which enables starting or stopping user servers, is guarded by the scope servers.

Scopes are not directly assigned to requesters. Rather, when a client performs an API call, their access will be evaluated based on their assigned roles.

Roles are collections of scopes that specify the level of what a client is allowed to do. For example, a group administrator may be granted permission to control the servers of group members, but not to create, modify or delete group members themselves.
Within the RBAC framework, this is achieved by assigning a role to the administrator that covers exactly those privileges.

Technical Overview

	Roles
	Defining Roles

	Removing roles

	Scopes in JupyterHub
	Scope conventions

	Metascopes

	Horizontal filtering

	Vertical filtering

	Available scopes

	Use Cases
	Service to cull idle servers

	API launcher

	Group admin roles

	Technical Implementation
	Resolving roles and scopes

	Upgrading JupyterHub with RBAC framework
	Upgrade steps

	Changing the permissions after the upgrade

	OAuth vs API tokens

 Roles

Roles

JupyterHub provides four roles that are available by default:

Default roles

	user role provides a default user scope self that grants access to the user’s own resources.

	admin role contains all available scopes and grants full rights to all actions. This role cannot be edited.

	token role provides a default token scope all that resolves to the same permissions as the owner of the token has.

	server role allows for posting activity of “itself” only.

These roles cannot be deleted.

These default roles have a default collection of scopes,
but you can define the scopes associated with each role (excluding admin) to suit your needs,
as seen below.

The user, admin, and token roles by default all preserve the permissions prior to RBAC.
Only the server role is changed from pre-2.0, to reduce its permissions to activity-only
instead of the default of a full access token.

Additional custom roles can also be defined (see Defining Roles).
Roles can be assigned to the following entities:

	Users

	Services

	Groups

	Tokens

An entity can have zero, one, or multiple roles, and there are no restrictions on which roles can be assigned to which entity. Roles can be added to or removed from entities at any time.

Users

When a new user gets created, they are assigned their default role user. Additionaly, if the user is created with admin privileges (via c.Authenticator.admin_users in jupyterhub_config.py or admin: true via API), they will be also granted admin role. If existing user’s admin status changes via API or jupyterhub_config.py, their default role will be updated accordingly (after next startup for the latter).

Services

Services do not have a default role. Services without roles have no access to the guarded API end-points, so most services will require assignment of a role in order to function.

Groups

A group does not require any role, and has no roles by default. If a user is a member of a group, they automatically inherit any of the group’s permissions (see Resolving roles and scopes for more details). This is useful for assigning a set of common permissions to several users.

Tokens

A token’s permissions are evaluated based on their owning entity. Since a token is always issued for a user or service, it can never have more permissions than its owner. If no specific role is requested for a new token, the token is assigned the token role.

Defining Roles

Roles can be defined or modified in the configuration file as a list of dictionaries. An example:

in jupyterhub_config.py

c.JupyterHub.load_roles = [
 {
   'name': 'server-rights',
   'description': 'Allows parties to start and stop user servers',
   'scopes': ['servers'],
   'users': ['alice', 'bob'],
   'services': ['idle-culler'],
   'groups': ['admin-group'],
 }
]

The role server-rights now allows the starting and stopping of servers by any of the following:

	users alice and bob

	the service idle-culler

	any member of the admin-group.

Attention

Tokens cannot be assigned roles through role definition but may be assigned specific roles when requested via API (see Requesting API token with specific roles).

Another example:

in jupyterhub_config.py

c.JupyterHub.load_roles = [
 {
 'description': 'Read-only user models',
 'name': 'reader',
 'scopes': ['read:users'],
 'services': ['external'],
 'users': ['maria', 'joe']
 }
]

The role reader allows users maria and joe and service external to read (but not modify) any user’s model.

Requirements

In a role definition, the name field is required, while all other fields are optional.

Role names must:

	be 3 - 255 characters

	use ascii lowercase, numbers, ‘unreserved’ URL punctuation -_.~

	start with a letter

	end with letter or number.

users, services, and groups only accept objects that already exist in the database or are defined previously in the file.
It is not possible to implicitly add a new user to the database by defining a new role.

If no scopes are defined for new role, JupyterHub will raise a warning. Providing non-existing scopes will result in an error.

In case the role with a certain name already exists in the database, its definition and scopes will be overwritten. This holds true for all roles except the admin role, which cannot be overwritten; an error will be raised if trying to do so. All the role bearers permissions present in the definition will change accordingly.

Overriding default roles

Role definitions can include those of the “default” roles listed above (admin excluded),
if the default scopes associated with those roles do not suit your deployment.
For example, to specify what permissions the $JUPYTERHUB_API_TOKEN issued to all single-user servers
has,
define the server role.

To restore the JupyterHub 1.x behavior of servers being able to do anything their owners can do,
use the scope inherit (for ‘inheriting’ the owner’s permissions):

c.JupyterHub.load_roles = [
 {
 'name': 'server',
 'scopes': ['inherit'],
 }
]

or, better yet, identify the specific scopes you want server environments to have access to.

If you don’t want to get too detailed,
one option is the self scope,
which will have no effect on non-admin users,
but will restrict the token issued to admin user servers to only have access to their own resources,
instead of being able to take actions on behalf of all other users.

c.JupyterHub.load_roles = [
 {
 'name': 'server',
 'scopes': ['self'],
 }
]

Removing roles

Only the entities present in the role definition in the jupyterhub_config.py remain the role bearers. If a user, service or group is removed from the role definition, they will lose the role on the next startup.

Once a role is loaded, it remains in the database until removing it from the jupyterhub_config.py and restarting the Hub. All previously defined role bearers will lose the role and associated permissions. Default roles, even if previously redefined through the config file and removed, will not be deleted from the database.

 Scopes in JupyterHub

Scopes in JupyterHub

A scope has a syntax-based design that reveals which resources it provides access to. Resources are objects with a type, associated data, relationships to other resources, and a set of methods that operate on them (see RESTful API [https://restful-api-design.readthedocs.io/en/latest/resources.html] documentation for more information).

<resource> in the RBAC scope design refers to the resource name in the JupyterHub’s API endpoints in most cases. For instance, <resource> equal to users corresponds to JupyterHub’s API endpoints beginning with /users.

Scope conventions

	<resource>

The top-level <resource> scopes, such as users or groups, grant read, write, and list permissions to the resource itself as well as its sub-resources. For example, the scope users:activity is included in the scope users.

	read:<resource>

Limits permissions to read-only operations on single resources.

	list:<resource>

Read-only access to listing endpoints.
Use read:<resource>:<subresource> to control what fields are returned.

	admin:<resource>

Grants additional permissions such as create/delete on the corresponding resource in addition to read and write permissions.

	access:<resource>

Grants access permissions to the <resource> via API or browser.

	<resource>:<subresource>

The vertically filtered scopes provide access to a subset of the information granted by the <resource> scope. E.g., the scope users:activity only provides permission to post user activity.

	<resource>!<object>=<objectname>

Horizontal filtering is implemented by the !<object>=<objectname>scope structure. A resource (or sub-resource) can be filtered based on user, server, group or service name. For instance, <resource>!user=charlie limits access to only return resources of user charlie.

Only one filter per scope is allowed, but filters for the same scope have an additive effect; a larger filter can be used by supplying the scope multiple times with different filters.

By adding a scope to an existing role, all role bearers will gain the associated permissions.

Metascopes

Metascopes do not follow the general scope syntax. Instead, a metascope resolves to a set of scopes, which can refer to different resources, based on their owning entity. In JupyterHub, there are currently two metascopes:

	default user scope self, and

	default token scope all.

Default user scope

Access to the user’s own resources and subresources is covered by metascope self. This metascope includes the user’s model, activity, servers and tokens. For example, self for a user named “gerard” includes:

	users!user=gerard where the users scope provides access to the full user model and activity. The filter restricts this access to the user’s own resources.

	servers!user=gerard which grants the user access to their own servers without being able to create/delete any.

	tokens!user=gerard which allows the user to access, request and delete their own tokens.

	access:servers!user=gerard which allows the user to access their own servers via API or browser.

The self scope is only valid for user entities. In other cases (e.g., for services) it resolves to an empty set of scopes.

Default token scope

The token metascope all covers the same scopes as the token owner’s scopes during requests. For example, if a token owner has roles containing the scopes read:groups and read:users, the all scope resolves to the set of scopes {read:groups, read:users}.

If the token owner has default user role, the all scope resolves to self, which will subsequently be expanded to include all the user-specific scopes (or empty set in the case of services).

If the token owner is a member of any group with roles, the group scopes will also be included in resolving the all scope.

Horizontal filtering

Horizontal filtering, also called resource filtering, is the concept of reducing the payload of an API call to cover only the subset of the resources that the scopes of the client provides them access to.
Requested resources are filtered based on the filter of the corresponding scope. For instance, if a service requests a user list (guarded with scope read:users) with a role that only contains scopes read:users!user=hannah and read:users!user=ivan, the returned list of user models will be an intersection of all users and the collection {hannah, ivan}. In case this intersection is empty, the API call returns an HTTP 404 error, regardless if any users exist outside of the clients scope filter collection.

In case a user resource is being accessed, any scopes with group filters will be expanded to filters for each user in those groups.

!user filter

The !user filter is a special horizontal filter that strictly refers to the “owner only” scopes, where owner is a user entity. The filter resolves internally into !user=<ownerusername> ensuring that only the owner’s resources may be accessed through the associated scopes.

For example, the server role assigned by default to server tokens contains access:servers!user and users:activity!user scopes. This allows the token to access and post activity of only the servers owned by the token owner.

The filter can be applied to any scope.

Vertical filtering

Vertical filtering, also called attribute filtering, is the concept of reducing the payload of an API call to cover only the attributes of the resources that the scopes of the client provides them access to. This occurs when the client scopes are subscopes of the API endpoint that is called.
For instance, if a client requests a user list with the only scope being read:users:groups, the returned list of user models will contain only a list of groups per user.
In case the client has multiple subscopes, the call returns the union of the data the client has access to.

The payload of an API call can be filtered both horizontally and vertically simultaneously. For instance, performing an API call to the endpoint /users/ with the scope users:name!user=juliette returns a payload of [{name: 'juliette'}] (provided that this name is present in the database).

Available scopes

Table below lists all available scopes and illustrates their hierarchy. Indented scopes indicate subscopes of the scope(s) above them.

There are four exceptions to the general scope conventions:

	read:users:name is a subscope of both read:users and read:servers.

The read:servers scope requires access to the user name (server owner) due to named servers distinguished internally in the form !server=username/servername.

	read:users:activity is a subscope of both read:users and users:activity.

Posting activity via the users:activity, which is not included in users scope, needs to check the last valid activity of the user.

	read:roles:users is a subscope of both read:roles and admin:users.

Admin privileges to the users resource include the information about user roles.

	read:roles:groups is a subscope of both read:roles and admin:groups.

Similar to the read:roles:users above.

Table 1. Available scopes and their hierarchy

	Scope

	Grants permission to:

	(no_scope)

	Identify the owner of the requesting entity.

	self

	The user’s own resources (metascope for users, resolves to (no_scope) for services)

	inherit

	Everything that the token-owning entity can access (metascope for tokens)

	admin:users

	Read, write, create and delete users and their authentication state, not including their servers or tokens.

	 admin:auth_state

	Read a user’s authentication state.

	 users

	Read and write permissions to user models (excluding servers, tokens and authentication state).

	 read:users

	Read user models (excluding including servers, tokens and authentication state).

	 read:users:name

	Read names of users.

	 read:users:groups

	Read users’ group membership.

	 read:users:activity

	Read time of last user activity.

	 list:users

	List users, including at least their names.

	 read:users:name

	Read names of users.

	 users:activity

	Update time of last user activity.

	 read:users:activity

	Read time of last user activity.

	 read:roles:users

	Read user role assignments.

	 delete:users

	Delete users.

	read:roles

	Read role assignments.

	 read:roles:users

	Read user role assignments.

	 read:roles:services

	Read service role assignments.

	 read:roles:groups

	Read group role assignments.

	admin:servers

	Read, start, stop, create and delete user servers and their state.

	 admin:server_state

	Read and write users’ server state.

	 servers

	Start and stop user servers.

	 read:servers

	Read users’ names and their server models (excluding the server state).

	 read:users:name

	Read names of users.

	 delete:servers

	Stop and delete users’ servers.

	tokens

	Read, write, create and delete user tokens.

	 read:tokens

	Read user tokens.

	admin:groups

	Read and write group information, create and delete groups.

	 groups

	Read and write group information, including adding/removing users to/from groups.

	 read:groups

	Read group models.

	 read:groups:name

	Read group names.

	 list:groups

	List groups, including at least their names.

	 read:groups:name

	Read group names.

	 read:roles:groups

	Read group role assignments.

	 delete:groups

	Delete groups.

	list:services

	List services, including at least their names.

	 read:services:name

	Read service names.

	read:services

	Read service models.

	 read:services:name

	Read service names.

	read:hub

	Read detailed information about the Hub.

	access:servers

	Access user servers via API or browser.

	access:services

	Access services via API or browser.

	proxy

	Read information about the proxy’s routing table, sync the Hub with the proxy and notify the Hub about a new proxy.

	shutdown

	Shutdown the hub.

Caution

Note that only the horizontal filtering can be added to scopes to customize them.

Metascopes self and all, <resource>, <resource>:<subresource>, read:<resource>, admin:<resource>, and access:<resource> scopes are predefined and cannot be changed otherwise.

Scopes and APIs

The scopes are also listed in the JupyterHub REST API documentation. Each API endpoint has a list of scopes which can be used to access the API; if no scopes are listed, the API is not authenticated and can be accessed without any permissions (i.e., no scopes).

Listed scopes by each API endpoint reflect the “lowest” permissions required to gain any access to the corresponding API. For example, posting user’s activity (POST /users/:name/activity) needs users:activity scope. If scope users is passed during the request, the access will be granted as the required scope is a subscope of the users scope. If, on the other hand, read:users:activity scope is passed, the access will be denied.

 Use Cases

Use Cases

To determine which scopes a role should have, one can follow these steps:

	Determine what actions the role holder should have/have not access to

	Match the actions against the JupyterHub’s APIs

	Check which scopes are required to access the APIs

	Combine scopes and subscopes if applicable

	Customize the scopes with filters if needed

	Define the role with required scopes and assign to users/services/groups/tokens

Below, different use cases are presented on how to use the RBAC framework.

Service to cull idle servers

Finding and shutting down idle servers can save a lot of computational resources.
We can make use of jupyterhub-idle-culler [https://github.com/jupyterhub/jupyterhub-idle-culler] to manage this for us.
Below follows a short tutorial on how to add a cull-idle service in the RBAC system.

	Install the cull-idle server script with pip install jupyterhub-idle-culler.

	Define a new service idle-culler and a new role for this service:

in jupyterhub_config.py

c.JupyterHub.services = [
 {
 "name": "idle-culler",
 "command": [
 sys.executable, "-m",
 "jupyterhub_idle_culler",
 "--timeout=3600"
],
 }
]

c.JupyterHub.load_roles = [
 {
 "name": "idle-culler",
 "description": "Culls idle servers",
 "scopes": ["read:users:name", "read:users:activity", "servers"],
 "services": ["idle-culler"],
 }
]

Important

Note that in the RBAC system the admin field in the idle-culler service definition is omitted. Instead, the idle-culler role provides the service with only the permissions it needs.

If the optional actions of deleting the idle servers and/or removing inactive users are desired, change the following scopes in the idle-culler role definition:

	servers to admin:servers for deleting servers

	read:users:name, read:users:activity to admin:users for deleting users.

	Restart JupyterHub to complete the process.

API launcher

A service capable of creating/removing users and launching multiple servers should have access to:

	POST and DELETE /users

	POST and DELETE /users/:name/server or /users/:name/servers/:server_name

	Creating/deleting servers

The scopes required to access the API enpoints:

	admin:users

	servers

	admin:servers

From the above, the role definition is:

in jupyterhub_config.py

c.JupyterHub.load_roles = [
 {
 "name": "api-launcher",
 "description": "Manages servers",
 "scopes": ["admin:users", "admin:servers"],
 "services": [<service_name>]
 }
]

If needed, the scopes can be modified to limit the permissions to e.g. a particular group with !group=groupname filter.

Group admin roles

Roles can be used to specify different group member privileges.

For example, a group of students class-A may have a role allowing all group members to access information about their group. Teacher johan, who is a student of class-A but a teacher of another group of students class-B, can have additional role permitting him to access information about class-B students as well as start/stop their servers.

The roles can then be defined as follows:

in jupyterhub_config.py

c.JupyterHub.load_groups = {
 'class-A': ['johan', 'student1', 'student2'],
 'class-B': ['student3', 'student4']
}

c.JupyterHub.load_roles = [
 {
   'name': 'class-A-student',
   'description': 'Grants access to information about the group',
   'scopes': ['read:groups!group=class-A'],
   'groups': ['class-A']
 },
 {
   'name': 'class-B-student',
   'description': 'Grants access to information about the group',
   'scopes': ['read:groups!group=class-B'],
   'groups': ['class-B']
 },
 {
   'name': 'teacher',
   'description': 'Allows for accessing information about teacher group members and starting/stopping their servers',
   'scopes': ['read:users!group=class-B', 'servers!group=class-B'],
   'users': ['johan']
 }
]

In the above example, johan has privileges inherited from class-A-student role and the teacher role on top of those.

Note

The scope filters (!group=) limit the privileges only to the particular groups. johan can access the servers and information of class-B group members only.

 Technical Implementation

Technical Implementation

Roles are stored in the database, where they are associated with users, services, etc., and can be added or modified as explained in Defining Roles section. Users, services, groups, and tokens can gain, change, and lose roles. This is currently achieved via jupyterhub_config.py (see Defining Roles) and will be made available via API in future. The latter will allow for changing a token’s role, and thereby its permissions, without the need to issue a new token.

Roles and scopes utilities can be found in roles.py and scopes.py modules. Scope variables take on five different formats which is reflected throughout the utilities via specific nomenclature:

Scope variable nomenclature

	scopes

List of scopes with abbreviations (used in role definitions). E.g., ["users:activity!user"].

	expanded scopes

Set of expanded scopes without abbreviations (i.e., resolved metascopes, filters and subscopes). E.g., {"users:activity!user=charlie", "read:users:activity!user=charlie"}.

	parsed scopes

Dictionary JSON like format of expanded scopes. E.g., {"users:activity": {"user": ["charlie"]}, "read:users:activity": {"users": ["charlie"]}}.

	intersection

Set of expanded scopes as intersection of 2 expanded scope sets.

	identify scopes

Set of expanded scopes needed for identify (whoami) endpoints.

Resolving roles and scopes

Resolving roles refers to determining which roles a user, service, token, or group has, extracting the list of scopes from each role and combining them into a single set of scopes.

Resolving scopes involves expanding scopes into all their possible subscopes (expanded scopes), parsing them into format used for access evaluation (parsed scopes) and, if applicable, comparing two sets of scopes (intersection). All procedures take into account the scope hierarchy, vertical and horizontal filtering, limiting or elevated permissions (read:<resource> or admin:<resource>, respectively), and metascopes.

Roles and scopes are resolved on several occasions, for example when requesting an API token with specific roles or making an API request. The following sections provide more details.

Requesting API token with specific roles

API tokens grant access to JupyterHub’s APIs. The RBAC framework allows for requesting tokens with specific existing roles. To date, it is only possible to add roles to a token through the POST /users/:name/tokens API where the roles can be specified in the token parameters body (see JupyterHub REST API).

RBAC adds several steps into the token issue flow.

If no roles are requested, the token is issued with the default token role (providing the requester is allowed to create the token).

If the token is requested with any roles, the permissions of requesting entity are checked against the requested permissions to ensure the token would not grant its owner additional privileges.

If, due to modifications of roles or entities, at API request time a token has any scopes that its owner does not, those scopes are removed. The API request is resolved without additional errors using the scopes intersection, but the Hub logs a warning (see Figure 2).

Resolving a token’s roles (yellow box in Figure 1) corresponds to resolving all the token’s owner roles (including the roles associated with their groups) and the token’s requested roles into a set of scopes. The two sets are compared (Resolve the scopes box in orange in Figure 1), taking into account the scope hierarchy but, solely for role assignment, omitting any horizontal filter comparison. If the token’s scopes are a subset of the token owner’s scopes, the token is issued with the requested roles; if not, JupyterHub will raise an error.

Figure 1 below illustrates the steps involved. The orange rectangles highlight where in the process the roles and scopes are resolved.

[image: ../_images/rbac-token-request-chart.png]

Figure 1. Resolving roles and scopes during API token request

Making an API request

With the RBAC framework each authenticated JupyterHub API request is guarded by a scope decorator that specifies which scopes are required to gain the access to the API.

When an API request is performed, the requesting API token’s roles are again resolved (yellow box in Figure 2) to ensure the token does not grant more permissions than its owner has at the request time (e.g., due to changing/losing roles).
If the owner’s roles do not include some scopes of the token’s scopes, only the intersection of the token’s and owner’s scopes will be used. For example, using a token with scope users whose owner’s role scope is read:users:name will result in only the read:users:name scope being passed on. In the case of no intersection, an empty set of scopes will be used.

The passed scopes are compared to the scopes required to access the API as follows:

	if the API scopes are present within the set of passed scopes, the access is granted and the API returns its “full” response

	if that is not the case, another check is utilized to determine if subscopes of the required API scopes can be found in the passed scope set:

	if found, the RBAC framework employs the filtering procedures to refine the API response to access only resource attributes corresponding to the passed scopes. For example, providing a scope read:users:activity!group=class-C for the GET /users API will return a list of user models from group class-C containing only the last_activity attribute for each user model

	if not found, the access to API is denied

Figure 2 illustrates this process highlighting the steps where the role and scope resolutions as well as filtering occur in orange.

[image: ../_images/rbac-api-request-chart.png]

Figure 2. Resolving roles and scopes when an API request is made

 Upgrading JupyterHub with RBAC framework

Upgrading JupyterHub with RBAC framework

RBAC framework requires different database setup than any previous JupyterHub versions due to eliminating the distinction between OAuth and API tokens (see OAuth vs API tokens for more details). This requires merging the previously two different database tables into one. By doing so, all existing tokens created before the upgrade no longer comply with the new database version and must be replaced.

This is achieved by the Hub deleting all existing tokens during the database upgrade and recreating the tokens loaded via the jupyterhub_config.py file with updated structure. However, any manually issued or stored tokens are not recreated automatically and must be manually re-issued after the upgrade.

No other database records are affected.

Upgrade steps

	All running servers must be stopped before proceeding with the upgrade.

	To upgrade the Hub, follow the Upgrading JupyterHub instructions.

Attention

We advise against defining any new roles in the jupyterhub.config.py file right after the upgrade is completed and JupyterHub restarted for the first time. This preserves the ‘current’ state of the Hub. You can define and assign new roles on any other following startup.

	After restarting the Hub re-issue all tokens that were previously issued manually (i.e., not through the jupyterhub_config.py file).

When the JupyterHub is restarted for the first time after the upgrade, all users, services and tokens stored in the database or re-loaded through the configuration file will be assigned their default role. Any newly added entities after that will be assigned their default role only if no other specific role is requested for them.

Changing the permissions after the upgrade

Once all the upgrade steps above are completed, the RBAC framework will be available for utilization. You can define new roles, modify default roles (apart from admin) and assign them to entities as described in the Defining Roles section.

We recommended the following procedure to start with RBAC:

	Identify which admin users and services you would like to grant only the permissions they need through the new roles.

	Strip these users and services of their admin status via API or UI. This will change their roles from admin to user.

Note

Stripping entities of their roles is currently available only via jupyterhub_config.py (see Removing roles).

	Define new roles that you would like to start using with appropriate scopes and assign them to these entities in jupyterhub_config.py.

	Restart the JupyterHub for the new roles to take effect.

OAuth vs API tokens

Before RBAC

Previous JupyterHub versions utilize two types of tokens, OAuth token and API token.

OAuth token is issued by the Hub to a single-user server when the user logs in. The token is stored in the browser cookie and is used to identify the user who owns the server during the OAuth flow. This token by default expires when the cookie reaches its expiry time of 2 weeks (or after 1 hour in JupyterHub versions < 1.3.0).

API token is issued by the Hub to a single-user server when launched and is used to communicate with the Hub’s APIs such as posting activity or completing the OAuth flow. This token has no expiry by default.

API tokens can also be issued to users via API (/hub/token or POST /users/:username/tokens) and services via jupyterhub_config.py to perform API requests.

With RBAC

The RBAC framework allows for granting tokens different levels of permissions via scopes attached to roles. The ‘only identify’ purpose of the separate OAuth tokens is no longer required. API tokens can be used used for every action, including the login and authentication, for which an API token with no role (i.e., no scope in Available scopes) is used.

OAuth tokens are therefore dropped from the Hub upgraded with the RBAC framework.

 Contributing

Contributing

We want you to contribute to JupyterHub in ways that are most exciting
& useful to you. We value documentation, testing, bug reporting & code equally,
and are glad to have your contributions in whatever form you wish :)

Our Code of Conduct [https://github.com/jupyter/governance/blob/HEAD/conduct/code_of_conduct.md]
(reporting guidelines [https://github.com/jupyter/governance/blob/HEAD/conduct/reporting_online.md])
helps keep our community welcoming to as many people as possible.

	Community communication channels

	Setting up a development install
	System requirements

	Setting up a development install

	Using DummyAuthenticator & SimpleLocalProcessSpawner

	Troubleshooting

	Contributing Documentation
	Building documentation locally

	Documentation conventions

	Testing JupyterHub
	Running the tests

	Troubleshooting Test Failures

	The JupyterHub roadmap
	Using the roadmap

	The roadmap proper

	Reporting security issues in Jupyter or JupyterHub

 Community communication channels

Community communication channels

We use Discourse <https://discourse.jupyter.org> for online discussion.
Everyone in the Jupyter community is welcome to bring ideas and questions there.
In addition, we use Gitter [https://gitter.im] for online, real-time text chat,
a place for more ephemeral discussions.
The primary Gitter channel for JupyterHub is jupyterhub/jupyterhub [https://gitter.im/jupyterhub/jupyterhub].
Gitter isn’t archived or searchable, so we recommend going to discourse first
to make sure that discussions are most useful and accessible to the community.
Remember that our community is distributed across the world in various
timezones, so be patient if you do not get an answer immediately!

GitHub issues are used for most long-form project discussions, bug reports
and feature requests. Issues related to a specific authenticator or
spawner should be directed to the appropriate repository for the
authenticator or spawner. If you are using a specific JupyterHub
distribution (such as Zero to JupyterHub on Kubernetes [http://github.com/jupyterhub/zero-to-jupyterhub-k8s]
or The Littlest JupyterHub [http://github.com/jupyterhub/the-littlest-jupyterhub/]),
you should open issues directly in their repository. If you can not
find a repository to open your issue in, do not worry! Create it in the main
JupyterHub repository [https://github.com/jupyterhub/jupyterhub/] and our
community will help you figure it out.

A mailing list [https://groups.google.com/forum/#!forum/jupyter] for all
of Project Jupyter exists, along with one for teaching with Jupyter [https://groups.google.com/forum/#!forum/jupyter-education].

 Setting up a development install

Setting up a development install

System requirements

JupyterHub can only run on MacOS or Linux operating systems. If you are
using Windows, we recommend using VirtualBox [https://virtualbox.org]
or a similar system to run Ubuntu Linux [https://ubuntu.com] for
development.

Install Python

JupyterHub is written in the Python [https://python.org] programming language, and
requires you have at least version 3.5 installed locally. If you haven’t
installed Python before, the recommended way to install it is to use
miniconda [https://conda.io/miniconda.html]. Remember to get the ‘Python 3’ version,
and not the ‘Python 2’ version!

Install nodejs

configurable-http-proxy, the default proxy implementation for
JupyterHub, is written in Javascript to run on NodeJS [https://nodejs.org/en/]. If you have not installed nodejs before, we
recommend installing it in the miniconda environment you set up for
Python. You can do so with conda install nodejs.

Install git

JupyterHub uses git [https://git-scm.com] & GitHub [https://github.com]
for development & collaboration. You need to install git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git] to work on
JupyterHub. We also recommend getting a free account on GitHub.com.

Setting up a development install

When developing JupyterHub, you need to make changes to the code & see
their effects quickly. You need to do a developer install to make that
happen.

Note

This guide does not attempt to dictate how development
environements should be isolated since that is a personal preference and can
be achieved in many ways, for example tox, conda, docker, etc. See this
forum thread [https://discourse.jupyter.org/t/thoughts-on-using-tox/3497] for
a more detailed discussion.

	Clone the JupyterHub git repository [https://github.com/jupyterhub/jupyterhub]
to your computer.

git clone https://github.com/jupyterhub/jupyterhub
cd jupyterhub

	Make sure the python you installed and the npm you installed
are available to you on the command line.

python -V

This should return a version number greater than or equal to 3.5.

npm -v

This should return a version number greater than or equal to 5.0.

	Install configurable-http-proxy. This is required to run
JupyterHub.

npm install -g configurable-http-proxy

If you get an error that says Error: EACCES: permission denied,
you might need to prefix the command with sudo. If you do not
have access to sudo, you may instead run the following commands:

npm install configurable-http-proxy
export PATH=$PATH:$(pwd)/node_modules/.bin

The second line needs to be run every time you open a new terminal.

	Install the python packages required for JupyterHub development.

python3 -m pip install -r dev-requirements.txt
python3 -m pip install -r requirements.txt

	Setup a database.

The default database engine is sqlite so if you are just trying
to get up and running quickly for local development that should be
available via python [https://docs.python.org/3.5/library/sqlite3.html].
See The Hub’s Database for details on other supported databases.

	Install the development version of JupyterHub. This lets you edit
JupyterHub code in a text editor & restart the JupyterHub process to
see your code changes immediately.

python3 -m pip install --editable .

	You are now ready to start JupyterHub!

jupyterhub

	You can access JupyterHub from your browser at
http://localhost:8000 now.

Happy developing!

Using DummyAuthenticator & SimpleLocalProcessSpawner

To simplify testing of JupyterHub, it’s helpful to use
DummyAuthenticator instead of the default JupyterHub
authenticator and SimpleLocalProcessSpawner instead of the default spawner.

There is a sample configuration file that does this in
testing/jupyterhub_config.py. To launch jupyterhub with this
configuration:

jupyterhub -f testing/jupyterhub_config.py

The default JupyterHub authenticator [https://jupyterhub.readthedocs.io/en/stable/reference/authenticators.html#the-default-pam-authenticator]
& spawner [https://jupyterhub.readthedocs.io/en/stable/api/spawner.html#localprocessspawner]
require your system to have user accounts for each user you want to log in to
JupyterHub as.

DummyAuthenticator allows you to log in with any username & password,
while SimpleLocalProcessSpawner allows you to start servers without having to
create a unix user for each JupyterHub user. Together, these make it
much easier to test JupyterHub.

Tip: If you are working on parts of JupyterHub that are common to all
authenticators & spawners, we recommend using both DummyAuthenticator &
SimpleLocalProcessSpawner. If you are working on just authenticator related
parts, use only SimpleLocalProcessSpawner. Similarly, if you are working on
just spawner related parts, use only DummyAuthenticator.

Troubleshooting

This section lists common ways setting up your development environment may
fail, and how to fix them. Please add to the list if you encounter yet
another way it can fail!

lessc not found

If the python3 -m pip install --editable . command fails and complains about
lessc being unavailable, you may need to explicitly install some
additional JavaScript dependencies:

npm install

This will fetch client-side JavaScript dependencies necessary to compile
CSS.

You may also need to manually update JavaScript and CSS after some
development updates, with:

python3 setup.py js # fetch updated client-side js
python3 setup.py css # recompile CSS from LESS sources

 Contributing Documentation

Contributing Documentation

Documentation is often more important than code. This page helps
you get set up on how to contribute documentation to JupyterHub.

Building documentation locally

We use sphinx [http://sphinx-doc.org] to build our documentation. It takes
our documentation source files (written in markdown [https://daringfireball.net/projects/markdown/] or reStructuredText [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] &
stored under the docs/source directory) and converts it into various
formats for people to read. To make sure the documentation you write or
change renders correctly, it is good practice to test it locally.

	Make sure you have successfuly completed Setting up a development install.

	Install the packages required to build the docs.

python3 -m pip install -r docs/requirements.txt

	Build the html version of the docs. This is the most commonly used
output format, so verifying it renders as you should is usually good
enough.

cd docs
make html

This step will display any syntax or formatting errors in the documentation,
along with the filename / line number in which they occurred. Fix them,
and re-run the make html command to re-render the documentation.

	View the rendered documentation by opening build/html/index.html in
a web browser.

Tip

On macOS, you can open a file from the terminal with open <path-to-file>.
On Linux, you can do the same with xdg-open <path-to-file>.

Documentation conventions

This section lists various conventions we use in our documentation. This is a
living document that grows over time, so feel free to add to it / change it!

Our entire documentation does not yet fully conform to these conventions yet,
so help in making it so would be appreciated!

pip invocation

There are many ways to invoke a pip command, we recommend the following
approach:

python3 -m pip

This invokes pip explicitly using the python3 binary that you are
currently using. This is the recommended way to invoke pip
in our documentation, since it is least likely to cause problems
with python3 and pip being from different environments.

For more information on how to invoke pip commands, see
the pip documentation [https://pip.pypa.io/en/stable/].

 Testing JupyterHub

Testing JupyterHub

Unit test help validate that JupyterHub works the way we think it does,
and continues to do so when changes occur. They also help communicate
precisely what we expect our code to do.

JupyterHub uses pytest [https://pytest.org] for all our tests. You
can find them under jupyterhub/tests directory in the git repository.

Running the tests

	Make sure you have completed Setting up a development install. You should be able
to start jupyterhub from the commandline & access it from your
web browser. This ensures that the dev environment is properly set
up for tests to run.

	You can run all tests in JupyterHub

pytest -v jupyterhub/tests

This should display progress as it runs all the tests, printing
information about any test failures as they occur.

If you wish to confirm test coverage the run tests with the --cov flag:

pytest -v --cov=jupyterhub jupyterhub/tests

	You can also run tests in just a specific file:

pytest -v jupyterhub/tests/<test-file-name>

	To run a specific test only, you can do:

pytest -v jupyterhub/tests/<test-file-name>::<test-name>

This runs the test with function name <test-name> defined in
<test-file-name>. This is very useful when you are iteratively
developing a single test.

For example, to run the test test_shutdown in the file test_api.py,
you would run:

pytest -v jupyterhub/tests/test_api.py::test_shutdown

Troubleshooting Test Failures

All the tests are failing

Make sure you have completed all the steps in Setting up a development install successfully, and
can launch jupyterhub from the terminal.

 The JupyterHub roadmap

The JupyterHub roadmap

This roadmap collects “next steps” for JupyterHub. It is about creating a
shared understanding of the project’s vision and direction amongst
the community of users, contributors, and maintainers.
The goal is to communicate priorities and upcoming release plans.
It is not a aimed at limiting contributions to what is listed here.

Using the roadmap

Sharing Feedback on the Roadmap

All of the community is encouraged to provide feedback as well as share new
ideas with the community. Please do so by submitting an issue. If you want to
have an informal conversation first use one of the other communication channels.
After submitting the issue, others from the community will probably
respond with questions or comments they have to clarify the issue. The
maintainers will help identify what a good next step is for the issue.

What do we mean by “next step”?

When submitting an issue, think about what “next step” category best describes
your issue:

	now, concrete/actionable step that is ready for someone to start work on.
These might be items that have a link to an issue or more abstract like
“decrease typos and dead links in the documentation”

	soon, less concrete/actionable step that is going to happen soon,
discussions around the topic are coming close to an end at which point it can
move into the “now” category

	later, abstract ideas or tasks, need a lot of discussion or
experimentation to shape the idea so that it can be executed. Can also
contain concrete/actionable steps that have been postponed on purpose
(these are steps that could be in “now” but the decision was taken to work on
them later)

Reviewing and Updating the Roadmap

The roadmap will get updated as time passes (next review by 1st December) based
on discussions and ideas captured as issues.
This means this list should not be exhaustive, it should only represent
the “top of the stack” of ideas. It should
not function as a wish list, collection of feature requests or todo list.
For those please create a
new issue [https://github.com/jupyterhub/jupyterhub/issues/new].

The roadmap should give the reader an idea of what is happening next, what needs
input and discussion before it can happen and what has been postponed.

The roadmap proper

Project vision

JupyterHub is a dependable tool used by humans that reduces the complexity of
creating the environment in which a piece of software can be executed.

Now

These “Now” items are considered active areas of focus for the project:

	HubShare - a sharing service for use with JupyterHub.

	Users should be able to:

	Push a project to other users.

	Get a checkout of a project from other users.

	Push updates to a published project.

	Pull updates from a published project.

	Manage conflicts/merges by simply picking a version (our/theirs)

	Get a checkout of a project from the internet. These steps are completely different from saving notebooks/files.

	Have directories that are managed by git completely separately from our stuff.

	Look at pushed content that they have access to without an explicit pull.

	Define and manage teams of users.

	Adding/removing a user to/from a team gives/removes them access to all projects that team has access to.

	Build other services, such as static HTML publishing and dashboarding on top of these things.

Soon

These “Soon” items are under discussion. Once an item reaches the point of an
actionable plan, the item will be moved to the “Now” section. Typically,
these will be moved at a future review of the roadmap.

	resource monitoring and management:

	(prometheus?) API for resource monitoring

	tracking activity on single-user servers instead of the proxy

	notes and activity tracking per API token

Later

The “Later” items are things that are at the back of the project’s mind. At this
time there is no active plan for an item. The project would like to find the
resources and time to discuss these ideas.

	real-time collaboration

	Enter into real-time collaboration mode for a project that starts a shared execution context.

	Once the single-user notebook package supports realtime collaboration,
implement sharing mechanism integrated into the Hub.

 Reporting security issues in Jupyter or JupyterHub

Reporting security issues in Jupyter or JupyterHub

If you find a security vulnerability in Jupyter or JupyterHub,
whether it is a failure of the security model described in Security Overview
or a failure in implementation,
please report it to security@ipython.org.

If you prefer to encrypt your security reports,
you can use this PGP public key.

 About

About

JupyterHub is an open source project and community. It is a part of the
Jupyter Project [https://jupyter.org]. JupyterHub is an open and inclusive
community, and invites contributions from anyone. This section covers information
about our community, as well as ways that you can connect and get involved.

	Contributors

	Changelog

	A Gallery of JupyterHub Deployments

 Contributors

Contributors

Project Jupyter thanks the following people for their help and
contribution on JupyterHub:

	adelcast

	Analect

	anderbubble

	anikitml

	ankitksharma

	apetresc

	athornton

	barrachri

	BerserkerTroll

	betatim

	Carreau

	cfournie

	charnpreetsingh

	chicovenancio

	cikao

	ckald

	cmoscardi

	consideRatio

	cqzlxl

	CRegenschein

	cwaldbieser

	danielballen

	danoventa

	daradib

	darky2004

	datapolitan

	dblockow-d2dcrc

	DeepHorizons

	DerekHeldtWerle

	dhirschfeld

	dietmarw

	dingc3

	dmartzol

	DominicFollettSmith

	dsblank

	dtaniwaki

	echarles

	ellisonbg

	emmanuel

	evanlinde

	Fokko

	fperez

	franga2000

	GladysNalvarte

	glenak1911

	gweis

	iamed18

	jamescurtin

	JamiesHQ

	JasonJWilliamsNY

	jbweston

	jdavidheiser

	jencabral

	jhamrick

	jkinkead

	johnkpark

	josephtate

	jzf2101

	karfai

	kinuax

	KrishnaPG

	kroq-gar78

	ksolan

	mbmilligan

	mgeplf

	minrk

	mistercrunch

	Mistobaan

	mpacer

	mwmarkland

	ndly

	nthiery

	nxg

	ObiWahn

	ozancaglayan

	paccorsi

	parente

	PeterDaveHello

	peterruppel

	phill84

	pjamason

	prasadkatti

	rafael-ladislau

	rcthomas

	rgbkrk

	rkdarst

	robnagler

	rschroll

	ryanlovett

	sangramga

	Scrypy

	schon

	shreddd

	Siecje

	smiller5678

	spoorthyv

	ssanderson

	summerswallow

	syutbai

	takluyver

	temogen

	ThomasMChen

	Thoralf Gutierrez

	timfreund

	TimShawver

	tklever

	Todd-Z-Li

	toobaz

	tsaeger

	tschaume

	vilhelmen

	whitead

	willingc

	YannBrrd

	yuvipanda

	zoltan-fedor

	zonca

 Changelog

Changelog

For detailed changes from the prior release, click on the version number, and
its link will bring up a GitHub listing of changes. Use git log on the
command line for details.

Unreleased [https://github.com/jupyterhub/jupyterhub/compare/2.0.0...HEAD]

2.0.0 [https://github.com/jupyterhub/jupyterhub/compare/1.5.0...2.0.0]

JupyterHub 2.0 is a big release!

The most significant change is the addition of roles and scopes
to the JupyterHub permissions model,
allowing more fine-grained access control.
Read more about it in the docs.

In particular, the ‘admin’ level of permissions should not be needed anymore,
and you can now grant users and services only the permissions they need, not more.
We encourage you to review permissions, especially any service or user with admin: true
and consider assigning only the necessary roles and scopes.

JupyterHub 2.0 requires an update to the database schema,
so make sure to read the upgrade documentation and backup your database
before upgrading.

stop all servers before upgrading

Upgrading JupyterHub to 2.0 revokes all tokens issued before the upgrade,
which means that single-user servers started before the upgrade
will become inaccessible after the upgrade until they have been stopped and started again.
To avoid this, it is best to shutdown all servers prior to the upgrade.

Other major changes that may require updates to your deployment,
depending on what features you use:

	List endpoints now support pagination, and have a max page size,
which means API consumers must be updated to make paginated requests
if you have a lot of users and/or groups.

	Spawners have stopped specifying any command-line options to spawners by default.
Previously, --ip and --port could be specified on the command-line.
From 2.0 forward, JupyterHub will only communicate options to Spawners via environment variables,
and the command to be launched is configured exclusively via Spawner.cmd and Spawner.args.

Other new features:

	new Admin page, written in React.
With RBAC, it should now be fully possible to implement a custom admin panel
as a service via the REST API.

	JupyterLab is the default UI for single-user servers,
if available in the user environment.
See more info
in the docs about switching back to the classic notebook,
if you are not ready to switch to JupyterLab.

	NullAuthenticator is now bundled with JupyterHub,
so you no longer need to install the nullauthenticator package to disable login,
you can set c.JupyterHub.authenticator_class = 'null'.

	Support jupyterhub --show-config option to see your current jupyterhub configuration.

	Add expiration date dropdown to Token page

and major bug fixes:

	Improve database rollback recovery on broken connections

and other changes:

	Requests to a not-running server (e.g. visiting /user/someuser/)
will return an HTTP 424 error instead of 503,
making it easier to monitor for real deployment problems.
JupyterLab in the user environment should be at least version 3.1.16
to recognize this error code as a stopped server.
You can temporarily opt-in to the older behavior (e.g. if older JupyterLab is required)
by setting c.JupyterHub.use_legacy_stopped_server_status_code = True.

Plus lots of little fixes along the way.

2.0.0 - 2021-12-01

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.5.0...2.0.0])

New features added

	Add NullAuthenticator to jupyterhub #3619 [https://github.com/jupyterhub/jupyterhub/pull/3619] (@manics [https://github.com/manics])

	2.0: jupyterlab by default #3615 [https://github.com/jupyterhub/jupyterhub/pull/3615] (@minrk [https://github.com/minrk])

	support inherited --show-config flags from base Application #3559 [https://github.com/jupyterhub/jupyterhub/pull/3559] (@minrk [https://github.com/minrk])

	Add expiration date dropdown to Token page #3552 [https://github.com/jupyterhub/jupyterhub/pull/3552] (@dolfinus [https://github.com/dolfinus])

	add opt-in model for paginated list results #3535 [https://github.com/jupyterhub/jupyterhub/pull/3535] (@minrk [https://github.com/minrk])

	Support auto login when used as a OAuth2 provider #3488 [https://github.com/jupyterhub/jupyterhub/pull/3488] (@yuvipanda [https://github.com/yuvipanda])

	Roles and Scopes (RBAC) #3438 [https://github.com/jupyterhub/jupyterhub/pull/3438] (@minrk [https://github.com/minrk])

	Make JupyterHub Admin page into a React app #3398 [https://github.com/jupyterhub/jupyterhub/pull/3398] (@naatebarber [https://github.com/naatebarber])

	Stop specifying --ip and --port on the command-line #3381 [https://github.com/jupyterhub/jupyterhub/pull/3381] (@minrk [https://github.com/minrk])

Enhancements made

	Add Session id to token/identify models #3685 [https://github.com/jupyterhub/jupyterhub/pull/3685] (@minrk [https://github.com/minrk])

	Log single-user app versions at startup #3681 [https://github.com/jupyterhub/jupyterhub/pull/3681] (@minrk [https://github.com/minrk])

	create groups declared in roles #3664 [https://github.com/jupyterhub/jupyterhub/pull/3664] (@minrk [https://github.com/minrk])

	Fail suspected API requests with 424, not 503 #3636 [https://github.com/jupyterhub/jupyterhub/pull/3636] (@yuvipanda [https://github.com/yuvipanda])

	add delete scopes for users, groups, servers #3616 [https://github.com/jupyterhub/jupyterhub/pull/3616] (@minrk [https://github.com/minrk])

	Reduce logging verbosity of ‘checking routes’ #3604 [https://github.com/jupyterhub/jupyterhub/pull/3604] (@yuvipanda [https://github.com/yuvipanda])

	Remove a couple every-request debug statements #3582 [https://github.com/jupyterhub/jupyterhub/pull/3582] (@minrk [https://github.com/minrk])

	Validate Content-Type Header for api POST requests #3575 [https://github.com/jupyterhub/jupyterhub/pull/3575] (@VaishnaviHire [https://github.com/VaishnaviHire])

	Improved Grammar for the Documentation #3572 [https://github.com/jupyterhub/jupyterhub/pull/3572] (@eruditehassan [https://github.com/eruditehassan])

Bugs fixed

	Hub: only accept tokens in API requests #3686 [https://github.com/jupyterhub/jupyterhub/pull/3686] (@minrk [https://github.com/minrk])

	Forward-port fixes from 1.5.0 security release #3679 [https://github.com/jupyterhub/jupyterhub/pull/3679] (@minrk [https://github.com/minrk])

	raise 404 on admin attempt to spawn nonexistent user #3653 [https://github.com/jupyterhub/jupyterhub/pull/3653] (@minrk [https://github.com/minrk])

	new user token returns 200 instead of 201 #3646 [https://github.com/jupyterhub/jupyterhub/pull/3646] (@joegasewicz [https://github.com/joegasewicz])

	Added base_url to path for jupyterhub-session-id cookie #3625 [https://github.com/jupyterhub/jupyterhub/pull/3625] (@albertmichaelj [https://github.com/albertmichaelj])

	Fix wrong name of auth_state_hook in the exception log #3569 [https://github.com/jupyterhub/jupyterhub/pull/3569] (@dolfinus [https://github.com/dolfinus])

	Stop injecting statsd parameters into the configurable HTTP proxy #3568 [https://github.com/jupyterhub/jupyterhub/pull/3568] (@paccorsi [https://github.com/paccorsi])

	explicit DB rollback for 500 errors #3566 [https://github.com/jupyterhub/jupyterhub/pull/3566] (@nsshah1288 [https://github.com/nsshah1288])

	don’t omit server model if it’s empty #3564 [https://github.com/jupyterhub/jupyterhub/pull/3564] (@minrk [https://github.com/minrk])

	ensure admin requests for missing users 404 #3563 [https://github.com/jupyterhub/jupyterhub/pull/3563] (@minrk [https://github.com/minrk])

	Avoid zombie processes in case of using LocalProcessSpawner #3543 [https://github.com/jupyterhub/jupyterhub/pull/3543] (@dolfinus [https://github.com/dolfinus])

	Fix regression where external services api_token became required #3531 [https://github.com/jupyterhub/jupyterhub/pull/3531] (@consideRatio [https://github.com/consideRatio])

	Fix allow_all check when only allow_admin is set #3526 [https://github.com/jupyterhub/jupyterhub/pull/3526] (@dolfinus [https://github.com/dolfinus])

	Bug: save_bearer_token (provider.py) passes a float value to the expires_at field (int) #3484 [https://github.com/jupyterhub/jupyterhub/pull/3484] (@weisdd [https://github.com/weisdd])

Maintenance and upkeep improvements

	build jupyterhub/singleuser along with other images #3690 [https://github.com/jupyterhub/jupyterhub/pull/3690] (@minrk [https://github.com/minrk])

	always use relative paths in data_files #3682 [https://github.com/jupyterhub/jupyterhub/pull/3682] (@minrk [https://github.com/minrk])

	Forward-port fixes from 1.5.0 security release #3679 [https://github.com/jupyterhub/jupyterhub/pull/3679] (@minrk [https://github.com/minrk])

	verify that successful login assigns default role #3674 [https://github.com/jupyterhub/jupyterhub/pull/3674] (@minrk [https://github.com/minrk])

	more calculators #3673 [https://github.com/jupyterhub/jupyterhub/pull/3673] (@minrk [https://github.com/minrk])

	use v2 of jupyterhub/action-major-minor-tag-calculator #3672 [https://github.com/jupyterhub/jupyterhub/pull/3672] (@minrk [https://github.com/minrk])

	Add support-bot #3670 [https://github.com/jupyterhub/jupyterhub/pull/3670] (@manics [https://github.com/manics])

	use tbump to tag versions #3669 [https://github.com/jupyterhub/jupyterhub/pull/3669] (@minrk [https://github.com/minrk])

	use stable autodoc-traits #3667 [https://github.com/jupyterhub/jupyterhub/pull/3667] (@minrk [https://github.com/minrk])

	Tests for our openapi spec #3665 [https://github.com/jupyterhub/jupyterhub/pull/3665] (@minrk [https://github.com/minrk])

	clarify some log messages during role assignment #3663 [https://github.com/jupyterhub/jupyterhub/pull/3663] (@minrk [https://github.com/minrk])

	Rename ‘all’ metascope to more descriptive ‘inherit’ #3661 [https://github.com/jupyterhub/jupyterhub/pull/3661] (@minrk [https://github.com/minrk])

	minor refinement of excessive scopes error message #3660 [https://github.com/jupyterhub/jupyterhub/pull/3660] (@minrk [https://github.com/minrk])

	deprecate instead of remove @admin_only auth decorator #3659 [https://github.com/jupyterhub/jupyterhub/pull/3659] (@minrk [https://github.com/minrk])

	improve timeout handling and messages #3658 [https://github.com/jupyterhub/jupyterhub/pull/3658] (@minrk [https://github.com/minrk])

	add api-only doc #3640 [https://github.com/jupyterhub/jupyterhub/pull/3640] (@minrk [https://github.com/minrk])

	Add pyupgrade –py36-plus to pre-commit config #3586 [https://github.com/jupyterhub/jupyterhub/pull/3586] (@consideRatio [https://github.com/consideRatio])

	pyupgrade: run pyupgrade –py36-plus and black on all but tests #3585 [https://github.com/jupyterhub/jupyterhub/pull/3585] (@consideRatio [https://github.com/consideRatio])

	pyupgrade: run pyupgrade –py36-plus and black on jupyterhub/tests #3584 [https://github.com/jupyterhub/jupyterhub/pull/3584] (@consideRatio [https://github.com/consideRatio])

	remove use of deprecated distutils #3562 [https://github.com/jupyterhub/jupyterhub/pull/3562] (@minrk [https://github.com/minrk])

	remove old, unused tasks.py #3561 [https://github.com/jupyterhub/jupyterhub/pull/3561] (@minrk [https://github.com/minrk])

	remove very old backward-compat for LocalProcess subclasses #3558 [https://github.com/jupyterhub/jupyterhub/pull/3558] (@minrk [https://github.com/minrk])

	Remove pre-commit from GHA #3524 [https://github.com/jupyterhub/jupyterhub/pull/3524] (@minrk [https://github.com/minrk])

	bump autodoc-traits #3510 [https://github.com/jupyterhub/jupyterhub/pull/3510] (@minrk [https://github.com/minrk])

	release docker workflow: ‘branchRegex: ^\w[\w-.]*$’ #3509 [https://github.com/jupyterhub/jupyterhub/pull/3509] (@manics [https://github.com/manics])

	exclude dependabot push events from release workflow #3505 [https://github.com/jupyterhub/jupyterhub/pull/3505] (@minrk [https://github.com/minrk])

	prepare to rename default branch to main #3462 [https://github.com/jupyterhub/jupyterhub/pull/3462] (@minrk [https://github.com/minrk])

Documentation improvements

	Service auth doc #3695 [https://github.com/jupyterhub/jupyterhub/pull/3695] (@minrk [https://github.com/minrk])

	changelog for 2.0.0rc5 #3692 [https://github.com/jupyterhub/jupyterhub/pull/3692] (@minrk [https://github.com/minrk])

	update 2.0 changelog #3687 [https://github.com/jupyterhub/jupyterhub/pull/3687] (@minrk [https://github.com/minrk])

	changelog for 2.0 release candidate #3662 [https://github.com/jupyterhub/jupyterhub/pull/3662] (@minrk [https://github.com/minrk])

	docs: fix typo in proxy config example #3657 [https://github.com/jupyterhub/jupyterhub/pull/3657] (@edgarcosta [https://github.com/edgarcosta])

	add 424 status code change to changelog #3649 [https://github.com/jupyterhub/jupyterhub/pull/3649] (@minrk [https://github.com/minrk])

	add latest changes to 2.0 changelog #3628 [https://github.com/jupyterhub/jupyterhub/pull/3628] (@minrk [https://github.com/minrk])

	server-api example typo: trim space in token file #3626 [https://github.com/jupyterhub/jupyterhub/pull/3626] (@minrk [https://github.com/minrk])

	Fix heading level in changelog #3610 [https://github.com/jupyterhub/jupyterhub/pull/3610] (@mriedem [https://github.com/mriedem])

	update quickstart requirements #3607 [https://github.com/jupyterhub/jupyterhub/pull/3607] (@minrk [https://github.com/minrk])

	2.0 changelog #3602 [https://github.com/jupyterhub/jupyterhub/pull/3602] (@minrk [https://github.com/minrk])

	Update/cleanup README #3601 [https://github.com/jupyterhub/jupyterhub/pull/3601] (@manics [https://github.com/manics])

	mailto link typo #3593 [https://github.com/jupyterhub/jupyterhub/pull/3593] (@minrk [https://github.com/minrk])

	[doc] add example specifying scopes for a default role #3581 [https://github.com/jupyterhub/jupyterhub/pull/3581] (@minrk [https://github.com/minrk])

	Add detailed doc for starting/waiting for servers via api #3565 [https://github.com/jupyterhub/jupyterhub/pull/3565] (@minrk [https://github.com/minrk])

	doc: Mention a list of known proxies available #3546 [https://github.com/jupyterhub/jupyterhub/pull/3546] (@AbdealiJK [https://github.com/AbdealiJK])

	Update changelog for 1.4.2 in main branch #3539 [https://github.com/jupyterhub/jupyterhub/pull/3539] (@consideRatio [https://github.com/consideRatio])

	Retrospectively update changelog for 1.4.1 in main branch #3537 [https://github.com/jupyterhub/jupyterhub/pull/3537] (@consideRatio [https://github.com/consideRatio])

	Fix contributor documentation’s link #3521 [https://github.com/jupyterhub/jupyterhub/pull/3521] (@icankeep [https://github.com/icankeep])

	Add research study participation notice to readme #3506 [https://github.com/jupyterhub/jupyterhub/pull/3506] (@sgibson91 [https://github.com/sgibson91])

	Fix typo #3494 [https://github.com/jupyterhub/jupyterhub/pull/3494] (@davidbrochart [https://github.com/davidbrochart])

	Add Chameleon to JupyterHub deployment gallery #3482 [https://github.com/jupyterhub/jupyterhub/pull/3482] (@diurnalist [https://github.com/diurnalist])

	Initial SECURITY.md #3445 [https://github.com/jupyterhub/jupyterhub/pull/3445] (@rpwagner [https://github.com/rpwagner])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-04-19&to=2021-11-30&type=c])

@0mar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0mar+updated%3A2021-04-19..2021-11-30&type=Issues] | @AbdealiJK [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAbdealiJK+updated%3A2021-04-19..2021-11-30&type=Issues] | @albertmichaelj [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalbertmichaelj+updated%3A2021-04-19..2021-11-30&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2021-04-19..2021-11-30&type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abollwyvl+updated%3A2021-04-19..2021-11-30&type=Issues] | @choldgraf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acholdgraf+updated%3A2021-04-19..2021-11-30&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-04-19..2021-11-30&type=Issues] | @cslocum [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acslocum+updated%3A2021-04-19..2021-11-30&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2021-04-19..2021-11-30&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidbrochart+updated%3A2021-04-19..2021-11-30&type=Issues] | @dependabot [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adependabot+updated%3A2021-04-19..2021-11-30&type=Issues] | @diurnalist [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adiurnalist+updated%3A2021-04-19..2021-11-30&type=Issues] | @dolfinus [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adolfinus+updated%3A2021-04-19..2021-11-30&type=Issues] | @echarles [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aecharles+updated%3A2021-04-19..2021-11-30&type=Issues] | @edgarcosta [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aedgarcosta+updated%3A2021-04-19..2021-11-30&type=Issues] | @ellisonbg [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aellisonbg+updated%3A2021-04-19..2021-11-30&type=Issues] | @eruditehassan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aeruditehassan+updated%3A2021-04-19..2021-11-30&type=Issues] | @icankeep [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aicankeep+updated%3A2021-04-19..2021-11-30&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2021-04-19..2021-11-30&type=Issues] | @joegasewicz [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajoegasewicz+updated%3A2021-04-19..2021-11-30&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2021-04-19..2021-11-30&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2021-04-19..2021-11-30&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-04-19..2021-11-30&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2021-04-19..2021-11-30&type=Issues] | @naatebarber [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Anaatebarber+updated%3A2021-04-19..2021-11-30&type=Issues] | @nsshah1288 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ansshah1288+updated%3A2021-04-19..2021-11-30&type=Issues] | @octavd [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aoctavd+updated%3A2021-04-19..2021-11-30&type=Issues] | @OrnithOrtion [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AOrnithOrtion+updated%3A2021-04-19..2021-11-30&type=Issues] | @paccorsi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apaccorsi+updated%3A2021-04-19..2021-11-30&type=Issues] | @panruipr [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apanruipr+updated%3A2021-04-19..2021-11-30&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apre-commit-ci+updated%3A2021-04-19..2021-11-30&type=Issues] | @rpwagner [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arpwagner+updated%3A2021-04-19..2021-11-30&type=Issues] | @sgibson91 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asgibson91+updated%3A2021-04-19..2021-11-30&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2021-04-19..2021-11-30&type=Issues] | @twalcari [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atwalcari+updated%3A2021-04-19..2021-11-30&type=Issues] | @VaishnaviHire [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AVaishnaviHire+updated%3A2021-04-19..2021-11-30&type=Issues] | @warwing [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awarwing+updated%3A2021-04-19..2021-11-30&type=Issues] | @weisdd [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aweisdd+updated%3A2021-04-19..2021-11-30&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2021-04-19..2021-11-30&type=Issues] | @willingc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awillingc+updated%3A2021-04-19..2021-11-30&type=Issues] | @ykazakov [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aykazakov+updated%3A2021-04-19..2021-11-30&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2021-04-19..2021-11-30&type=Issues]

1.5

JupyterHub 1.5 is a security release,
fixing a vulnerability ghsa-cw7p-q79f-m2v7 [https://github.com/jupyterhub/jupyterhub/security/advisories/GHSA-cw7p-q79f-m2v7] where JupyterLab users
with multiple tabs open could fail to logout completely,
leaving their browser with valid credentials until they logout again.

A few fully backward-compatible features have been backported from 2.0.

1.5.0 [https://github.com/jupyterhub/jupyterhub/compare/1.4.2...1.5.0] 2021-11-04

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.4.2...1.5.0])

New features added

	Backport #3636 to 1.4.x (opt-in support for JupyterHub.use_legacy_stopped_server_status_code) #3639 [https://github.com/jupyterhub/jupyterhub/pull/3639] (@yuvipanda [https://github.com/yuvipanda])

	Backport PR #3552 on branch 1.4.x (Add expiration date dropdown to Token page) #3580 [https://github.com/jupyterhub/jupyterhub/pull/3580] (@meeseeksmachine [https://github.com/meeseeksmachine])

	Backport PR #3488 on branch 1.4.x (Support auto login when used as a OAuth2 provider) #3579 [https://github.com/jupyterhub/jupyterhub/pull/3579] (@meeseeksmachine [https://github.com/meeseeksmachine])

Maintenance and upkeep improvements

	1.4.x: update doc requirements #3677 [https://github.com/jupyterhub/jupyterhub/pull/3677] (@minrk [https://github.com/minrk])

Documentation improvements

	use_legacy_stopped_server_status_code: use 1.* language #3676 [https://github.com/jupyterhub/jupyterhub/pull/3676] (@manics [https://github.com/manics])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-07-16&to=2021-11-03&type=c])

@choldgraf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acholdgraf+updated%3A2021-07-16..2021-11-03&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-07-16..2021-11-03&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2021-07-16..2021-11-03&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2021-07-16..2021-11-03&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-07-16..2021-11-03&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2021-07-16..2021-11-03&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2021-07-16..2021-11-03&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2021-07-16..2021-11-03&type=Issues]

1.4

JupyterHub 1.4 is a small release, with several enhancements, bug fixes,
and new configuration options.

There are no database schema changes requiring migration from 1.3 to 1.4.

1.4 is also the first version to start publishing docker images for arm64.

In particular, OAuth tokens stored in user cookies,
used for accessing single-user servers and hub-authenticated services,
have changed their expiration from one hour to the expiry of the cookie
in which they are stored (default: two weeks).
This is now also configurable via JupyterHub.oauth_token_expires_in.

The result is that it should be much less likely for auth tokens stored in cookies
to expire during the lifetime of a server.

1.4.2 [https://github.com/jupyterhub/jupyterhub/compare/1.4.1...1.4.2] 2021-06-15

1.4.2 is a small bugfix release for 1.4.

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.4.1...d9860aa98cc537cf685022f81b8f725bfef41304])

Bugs fixed

	Fix regression where external services api_token became required #3531 [https://github.com/jupyterhub/jupyterhub/pull/3531] (@consideRatio [https://github.com/consideRatio])

	Bug: save_bearer_token (provider.py) passes a float value to the expires_at field (int) #3484 [https://github.com/jupyterhub/jupyterhub/pull/3484] (@weisdd [https://github.com/weisdd])

Maintenance and upkeep improvements

	bump autodoc-traits #3510 [https://github.com/jupyterhub/jupyterhub/pull/3510] (@minrk [https://github.com/minrk])

Documentation improvements

	Fix contributor documentation’s link #3521 [https://github.com/jupyterhub/jupyterhub/pull/3521] (@icankeep [https://github.com/icankeep])

	Fix typo #3494 [https://github.com/jupyterhub/jupyterhub/pull/3494] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-05-12&to=2021-07-15&type=c])

@consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-05-12..2021-07-15&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidbrochart+updated%3A2021-05-12..2021-07-15&type=Issues] | @icankeep [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aicankeep+updated%3A2021-05-12..2021-07-15&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-05-12..2021-07-15&type=Issues] | @weisdd [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aweisdd+updated%3A2021-05-12..2021-07-15&type=Issues]

1.4.1 [https://github.com/jupyterhub/jupyterhub/compare/1.4.0...1.4.1] 2021-05-12

1.4.1 is a small bugfix release for 1.4.

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.4.0...1.4.1])

Enhancements made

Bugs fixed

	define Spawner.delete_forever on base Spawner #3454 [https://github.com/jupyterhub/jupyterhub/pull/3454] (@minrk [https://github.com/minrk])

	patch base handlers from both jupyter_server and notebook #3437 [https://github.com/jupyterhub/jupyterhub/pull/3437] (@minrk [https://github.com/minrk])

Maintenance and upkeep improvements

	ci: fix typo in environment variable #3457 [https://github.com/jupyterhub/jupyterhub/pull/3457] (@consideRatio [https://github.com/consideRatio])

	avoid re-using asyncio.Locks across event loops #3456 [https://github.com/jupyterhub/jupyterhub/pull/3456] (@minrk [https://github.com/minrk])

	ci: github workflow security, pin action to sha etc #3436 [https://github.com/jupyterhub/jupyterhub/pull/3436] (@consideRatio [https://github.com/consideRatio])

Documentation improvements

	Fix documentation #3452 [https://github.com/jupyterhub/jupyterhub/pull/3452] (@davidbrochart [https://github.com/davidbrochart])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2021-04-19&to=2021-05-12&type=c])

@0mar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0mar+updated%3A2021-04-19..2021-05-12&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2021-04-19..2021-05-12&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2021-04-19..2021-05-12&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2021-04-19..2021-05-12&type=Issues] | @davidbrochart [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidbrochart+updated%3A2021-04-19..2021-05-12&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2021-04-19..2021-05-12&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2021-04-19..2021-05-12&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2021-04-19..2021-05-12&type=Issues] | @naatebarber [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Anaatebarber+updated%3A2021-04-19..2021-05-12&type=Issues] | @OrnithOrtion [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AOrnithOrtion+updated%3A2021-04-19..2021-05-12&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2021-04-19..2021-05-12&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2021-04-19..2021-05-12&type=Issues]

1.4.0 [https://github.com/jupyterhub/jupyterhub/compare/1.3.0...1.4.0] 2021-04-19

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.3.0...1.4.0])

New features added

	Support Proxy.extra_routes #3430 [https://github.com/jupyterhub/jupyterhub/pull/3430] (@yuvipanda [https://github.com/yuvipanda])

	login-template: Add a “login_container” block inside the div-container. #3422 [https://github.com/jupyterhub/jupyterhub/pull/3422] (@olifre [https://github.com/olifre])

	Docker arm64 builds #3421 [https://github.com/jupyterhub/jupyterhub/pull/3421] (@manics [https://github.com/manics])

	make oauth token expiry configurable #3411 [https://github.com/jupyterhub/jupyterhub/pull/3411] (@minrk [https://github.com/minrk])

	allow the hub to not be the default route #3373 [https://github.com/jupyterhub/jupyterhub/pull/3373] (@minrk [https://github.com/minrk])

	Allow customization of service menu via templates #3345 [https://github.com/jupyterhub/jupyterhub/pull/3345] (@stv0g [https://github.com/stv0g])

	Add Spawner.delete_forever #3337 [https://github.com/jupyterhub/jupyterhub/pull/3337] (@nsshah1288 [https://github.com/nsshah1288])

	Allow to set spawner-specific hub connect URL #3326 [https://github.com/jupyterhub/jupyterhub/pull/3326] (@dtaniwaki [https://github.com/dtaniwaki])

	Make Authenticator Custom HTML Flexible #3315 [https://github.com/jupyterhub/jupyterhub/pull/3315] (@dtaniwaki [https://github.com/dtaniwaki])

Enhancements made

	Log the exception raised in Spawner.post_stop_hook instead of raising it #3418 [https://github.com/jupyterhub/jupyterhub/pull/3418] (@jiajunjie [https://github.com/jiajunjie])

	Don’t delete all oauth clients on startup #3407 [https://github.com/jupyterhub/jupyterhub/pull/3407] (@yuvipanda [https://github.com/yuvipanda])

	Use ‘secrets’ module to generate secrets #3394 [https://github.com/jupyterhub/jupyterhub/pull/3394] (@yuvipanda [https://github.com/yuvipanda])

	Allow cookie_secret to be set to a hexadecimal string #3343 [https://github.com/jupyterhub/jupyterhub/pull/3343] (@consideRatio [https://github.com/consideRatio])

	Clear tornado xsrf cookie on logout #3341 [https://github.com/jupyterhub/jupyterhub/pull/3341] (@dtaniwaki [https://github.com/dtaniwaki])

	always log slow requests at least at info-level #3338 [https://github.com/jupyterhub/jupyterhub/pull/3338] (@minrk [https://github.com/minrk])

Bugs fixed

	always start redirect count at 1 when redirecting /hub/user/:name -> /user/:name #3377 [https://github.com/jupyterhub/jupyterhub/pull/3377] (@minrk [https://github.com/minrk])

	Always raise on failed token creation #3370 [https://github.com/jupyterhub/jupyterhub/pull/3370] (@minrk [https://github.com/minrk])

	make_singleuser_app: patch-in HubAuthenticatedHandler at lower priority #3347 [https://github.com/jupyterhub/jupyterhub/pull/3347] (@minrk [https://github.com/minrk])

	Fix pagination with named servers #3335 [https://github.com/jupyterhub/jupyterhub/pull/3335] (@rcthomas [https://github.com/rcthomas])

Maintenance and upkeep improvements

	typos in onbuild, demo images for push #3429 [https://github.com/jupyterhub/jupyterhub/pull/3429] (@minrk [https://github.com/minrk])

	Disable docker jupyterhub-demo arm64 build #3425 [https://github.com/jupyterhub/jupyterhub/pull/3425] (@manics [https://github.com/manics])

	Docker arm64 builds #3421 [https://github.com/jupyterhub/jupyterhub/pull/3421] (@manics [https://github.com/manics])

	avoid deprecated engine.table_names #3392 [https://github.com/jupyterhub/jupyterhub/pull/3392] (@minrk [https://github.com/minrk])

	alpine dockerfile: avoid compilation by getting some deps from apk #3386 [https://github.com/jupyterhub/jupyterhub/pull/3386] (@minrk [https://github.com/minrk])

	Fix sqlachemy.interfaces.PoolListener deprecation for tests #3383 [https://github.com/jupyterhub/jupyterhub/pull/3383] (@IvanaH8 [https://github.com/IvanaH8])

	Update pre-commit hooks versions #3362 [https://github.com/jupyterhub/jupyterhub/pull/3362] (@consideRatio [https://github.com/consideRatio])

	add (and run) prettier pre-commit hook #3360 [https://github.com/jupyterhub/jupyterhub/pull/3360] (@minrk [https://github.com/minrk])

	move get_custom_html to base Authenticator class #3359 [https://github.com/jupyterhub/jupyterhub/pull/3359] (@minrk [https://github.com/minrk])

	publish release outputs as artifacts #3349 [https://github.com/jupyterhub/jupyterhub/pull/3349] (@minrk [https://github.com/minrk])

	[TST] Do not implicitly create users in auth_header #3344 [https://github.com/jupyterhub/jupyterhub/pull/3344] (@minrk [https://github.com/minrk])

	specify minimum alembic 1.4 #3339 [https://github.com/jupyterhub/jupyterhub/pull/3339] (@minrk [https://github.com/minrk])

	ci: github actions, allow for manual test runs and fix badge in readme #3324 [https://github.com/jupyterhub/jupyterhub/pull/3324] (@consideRatio [https://github.com/consideRatio])

	publish releases from github actions #3305 [https://github.com/jupyterhub/jupyterhub/pull/3305] (@minrk [https://github.com/minrk])

Documentation improvements

	DOC: Conform to numpydoc. #3428 [https://github.com/jupyterhub/jupyterhub/pull/3428] (@Carreau [https://github.com/Carreau])

	Fix link to jupyterhub/jupyterhub-the-hard-way #3417 [https://github.com/jupyterhub/jupyterhub/pull/3417] (@manics [https://github.com/manics])

	Changelog for 1.4 #3415 [https://github.com/jupyterhub/jupyterhub/pull/3415] (@minrk [https://github.com/minrk])

	Fastapi example #3403 [https://github.com/jupyterhub/jupyterhub/pull/3403] (@kafonek [https://github.com/kafonek])

	Added Azure AD as a supported authenticator. #3401 [https://github.com/jupyterhub/jupyterhub/pull/3401] (@maxshowarth [https://github.com/maxshowarth])

	Remove the hard way guide #3375 [https://github.com/jupyterhub/jupyterhub/pull/3375] (@manics [https://github.com/manics])

	:memo: Fix telemetry section #3333 [https://github.com/jupyterhub/jupyterhub/pull/3333] (@trallard [https://github.com/trallard])

	Fix the help related to the proxy check #3332 [https://github.com/jupyterhub/jupyterhub/pull/3332] (@jiajunjie [https://github.com/jiajunjie])

	Mention Jupyter Server as optional single-user backend in documentation #3329 [https://github.com/jupyterhub/jupyterhub/pull/3329] (@Zsailer [https://github.com/Zsailer])

	Fix mixup in comment regarding the sync parameter #3325 [https://github.com/jupyterhub/jupyterhub/pull/3325] (@andrewisplinghoff [https://github.com/andrewisplinghoff])

	docs: fix simple typo, funciton -> function #3314 [https://github.com/jupyterhub/jupyterhub/pull/3314] (@timgates42 [https://github.com/timgates42])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-12-11&to=2021-04-19&type=c])

@00Kai0 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A00Kai0+updated%3A2020-12-11..2021-04-19&type=Issues] | @8rV1n [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A8rV1n+updated%3A2020-12-11..2021-04-19&type=Issues] | @akhilputhiry [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aakhilputhiry+updated%3A2020-12-11..2021-04-19&type=Issues] | @alexal [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexal+updated%3A2020-12-11..2021-04-19&type=Issues] | @analytically [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aanalytically+updated%3A2020-12-11..2021-04-19&type=Issues] | @andreamazzoni [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aandreamazzoni+updated%3A2020-12-11..2021-04-19&type=Issues] | @andrewisplinghoff [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aandrewisplinghoff+updated%3A2020-12-11..2021-04-19&type=Issues] | @BertR [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ABertR+updated%3A2020-12-11..2021-04-19&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-12-11..2021-04-19&type=Issues] | @bitnik [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abitnik+updated%3A2020-12-11..2021-04-19&type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abollwyvl+updated%3A2020-12-11..2021-04-19&type=Issues] | @carluri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acarluri+updated%3A2020-12-11..2021-04-19&type=Issues] | @Carreau [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ACarreau+updated%3A2020-12-11..2021-04-19&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-12-11..2021-04-19&type=Issues] | @davidedelvento [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adavidedelvento+updated%3A2020-12-11..2021-04-19&type=Issues] | @dhirschfeld [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adhirschfeld+updated%3A2020-12-11..2021-04-19&type=Issues] | @dmpe [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Admpe+updated%3A2020-12-11..2021-04-19&type=Issues] | @dsblank [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adsblank+updated%3A2020-12-11..2021-04-19&type=Issues] | @dtaniwaki [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adtaniwaki+updated%3A2020-12-11..2021-04-19&type=Issues] | @echarles [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aecharles+updated%3A2020-12-11..2021-04-19&type=Issues] | @elgalu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aelgalu+updated%3A2020-12-11..2021-04-19&type=Issues] | @eran-pinhas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aeran-pinhas+updated%3A2020-12-11..2021-04-19&type=Issues] | @gaebor [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agaebor+updated%3A2020-12-11..2021-04-19&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-12-11..2021-04-19&type=Issues] | @gsemet [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agsemet+updated%3A2020-12-11..2021-04-19&type=Issues] | @gweis [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agweis+updated%3A2020-12-11..2021-04-19&type=Issues] | @hynek2001 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ahynek2001+updated%3A2020-12-11..2021-04-19&type=Issues] | @ianabc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aianabc+updated%3A2020-12-11..2021-04-19&type=Issues] | @ibre5041 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aibre5041+updated%3A2020-12-11..2021-04-19&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2020-12-11..2021-04-19&type=Issues] | @jhegedus42 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajhegedus42+updated%3A2020-12-11..2021-04-19&type=Issues] | @jhermann [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajhermann+updated%3A2020-12-11..2021-04-19&type=Issues] | @jiajunjie [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajiajunjie+updated%3A2020-12-11..2021-04-19&type=Issues] | @jtlz2 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajtlz2+updated%3A2020-12-11..2021-04-19&type=Issues] | @kafonek [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akafonek+updated%3A2020-12-11..2021-04-19&type=Issues] | @katsar0v [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akatsar0v+updated%3A2020-12-11..2021-04-19&type=Issues] | @kinow [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akinow+updated%3A2020-12-11..2021-04-19&type=Issues] | @krinsman [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akrinsman+updated%3A2020-12-11..2021-04-19&type=Issues] | @laurensdv [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alaurensdv+updated%3A2020-12-11..2021-04-19&type=Issues] | @lits789 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alits789+updated%3A2020-12-11..2021-04-19&type=Issues] | @m-alekseev [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Am-alekseev+updated%3A2020-12-11..2021-04-19&type=Issues] | @mabbasi90 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amabbasi90+updated%3A2020-12-11..2021-04-19&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-12-11..2021-04-19&type=Issues] | @manniche [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanniche+updated%3A2020-12-11..2021-04-19&type=Issues] | @maxshowarth [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amaxshowarth+updated%3A2020-12-11..2021-04-19&type=Issues] | @mdivk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amdivk+updated%3A2020-12-11..2021-04-19&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-12-11..2021-04-19&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-12-11..2021-04-19&type=Issues] | @mogthesprog [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amogthesprog+updated%3A2020-12-11..2021-04-19&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-12-11..2021-04-19&type=Issues] | @nsshah1288 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ansshah1288+updated%3A2020-12-11..2021-04-19&type=Issues] | @olifre [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aolifre+updated%3A2020-12-11..2021-04-19&type=Issues] | @PandaWhoCodes [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3APandaWhoCodes+updated%3A2020-12-11..2021-04-19&type=Issues] | @pawsaw [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apawsaw+updated%3A2020-12-11..2021-04-19&type=Issues] | @phozzy [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aphozzy+updated%3A2020-12-11..2021-04-19&type=Issues] | @playermanny2 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aplayermanny2+updated%3A2020-12-11..2021-04-19&type=Issues] | @rabsr [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arabsr+updated%3A2020-12-11..2021-04-19&type=Issues] | @randy3k [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arandy3k+updated%3A2020-12-11..2021-04-19&type=Issues] | @rawrgulmuffins [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arawrgulmuffins+updated%3A2020-12-11..2021-04-19&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-12-11..2021-04-19&type=Issues] | @rebeca-maia [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arebeca-maia+updated%3A2020-12-11..2021-04-19&type=Issues] | @rebenkoy [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arebenkoy+updated%3A2020-12-11..2021-04-19&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-12-11..2021-04-19&type=Issues] | @robnagler [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arobnagler+updated%3A2020-12-11..2021-04-19&type=Issues] | @ronaldpetty [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aronaldpetty+updated%3A2020-12-11..2021-04-19&type=Issues] | @ryanlovett [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryanlovett+updated%3A2020-12-11..2021-04-19&type=Issues] | @ryogesh [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryogesh+updated%3A2020-12-11..2021-04-19&type=Issues] | @sbailey-auro [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asbailey-auro+updated%3A2020-12-11..2021-04-19&type=Issues] | @sigurdurb [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asigurdurb+updated%3A2020-12-11..2021-04-19&type=Issues] | @SivaAccionLabs [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ASivaAccionLabs+updated%3A2020-12-11..2021-04-19&type=Issues] | @sougou [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asougou+updated%3A2020-12-11..2021-04-19&type=Issues] | @stv0g [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astv0g+updated%3A2020-12-11..2021-04-19&type=Issues] | @sudi007 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asudi007+updated%3A2020-12-11..2021-04-19&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-12-11..2021-04-19&type=Issues] | @tathagata [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atathagata+updated%3A2020-12-11..2021-04-19&type=Issues] | @timgates42 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atimgates42+updated%3A2020-12-11..2021-04-19&type=Issues] | @trallard [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atrallard+updated%3A2020-12-11..2021-04-19&type=Issues] | @vlizanae [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avlizanae+updated%3A2020-12-11..2021-04-19&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-12-11..2021-04-19&type=Issues] | @whitespaceninja [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awhitespaceninja+updated%3A2020-12-11..2021-04-19&type=Issues] | @whlteXbread [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AwhlteXbread+updated%3A2020-12-11..2021-04-19&type=Issues] | @willingc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awillingc+updated%3A2020-12-11..2021-04-19&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-12-11..2021-04-19&type=Issues] | @Zsailer [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AZsailer+updated%3A2020-12-11..2021-04-19&type=Issues]

1.3

JupyterHub 1.3 is a small feature release. Highlights include:

	Require Python >=3.6 (jupyterhub 1.2 is the last release to support 3.5)

	Add a ?state= filter for getting user list, allowing much quicker responses
when retrieving a small fraction of users.
state can be active, inactive, or ready.

	prometheus metrics now include a jupyterhub_ prefix,
so deployments may need to update their grafana charts to match.

	page templates can now be async [https://jinja.palletsprojects.com/en/2.11.x/api/#async-support]!

1.3.0 [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...1.3.0]

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...1.3.0])

Enhancements made

	allow services to call /api/user to identify themselves #3293 [https://github.com/jupyterhub/jupyterhub/pull/3293] (@minrk [https://github.com/minrk])

	Add optional user agreement to login screen #3264 [https://github.com/jupyterhub/jupyterhub/pull/3264] (@tlvu [https://github.com/tlvu])

	[Metrics] Add prefix to prometheus metrics to group all jupyterhub metrics #3243 [https://github.com/jupyterhub/jupyterhub/pull/3243] (@agp8x [https://github.com/agp8x])

	Allow options_from_form to be configurable #3225 [https://github.com/jupyterhub/jupyterhub/pull/3225] (@cbanek [https://github.com/cbanek])

	add ?state= filter for GET /users #3177 [https://github.com/jupyterhub/jupyterhub/pull/3177] (@minrk [https://github.com/minrk])

	Enable async support in jinja2 templates #3176 [https://github.com/jupyterhub/jupyterhub/pull/3176] (@yuvipanda [https://github.com/yuvipanda])

Bugs fixed

	fix increasing pagination limits #3294 [https://github.com/jupyterhub/jupyterhub/pull/3294] (@minrk [https://github.com/minrk])

	fix and test TOTAL_USERS count #3289 [https://github.com/jupyterhub/jupyterhub/pull/3289] (@minrk [https://github.com/minrk])

	Fix asyncio deprecation asyncio.Task.all_tasks #3298 [https://github.com/jupyterhub/jupyterhub/pull/3298] (@coffeebenzene [https://github.com/coffeebenzene])

Maintenance and upkeep improvements

	bump oldest-required prometheus-client #3292 [https://github.com/jupyterhub/jupyterhub/pull/3292] (@minrk [https://github.com/minrk])

	bump black pre-commit hook to 20.8 #3287 [https://github.com/jupyterhub/jupyterhub/pull/3287] (@minrk [https://github.com/minrk])

	Test internal_ssl separately #3266 [https://github.com/jupyterhub/jupyterhub/pull/3266] (@0mar [https://github.com/0mar])

	wait for pending spawns in spawn_form_admin_access #3253 [https://github.com/jupyterhub/jupyterhub/pull/3253] (@minrk [https://github.com/minrk])

	Assume py36 and remove @gen.coroutine etc. #3242 [https://github.com/jupyterhub/jupyterhub/pull/3242] (@consideRatio [https://github.com/consideRatio])

Documentation improvements

	Fix curl in jupyter announcements #3286 [https://github.com/jupyterhub/jupyterhub/pull/3286] (@Sangarshanan [https://github.com/Sangarshanan])

	CONTRIBUTING: Fix contributor guide URL #3281 [https://github.com/jupyterhub/jupyterhub/pull/3281] (@olifre [https://github.com/olifre])

	Update services.md #3267 [https://github.com/jupyterhub/jupyterhub/pull/3267] (@slemonide [https://github.com/slemonide])

	[Docs] Fix https reverse proxy redirect issues #3244 [https://github.com/jupyterhub/jupyterhub/pull/3244] (@mhwasil [https://github.com/mhwasil])

	Fixed idle-culler references. #3300 [https://github.com/jupyterhub/jupyterhub/pull/3300] (@mxjeff [https://github.com/mxjeff])

	Remove the extra parenthesis in service.md #3303 [https://github.com/jupyterhub/jupyterhub/pull/3303] (@Sangarshanan [https://github.com/Sangarshanan])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-10-30&to=2020-12-11&type=c])

@0mar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0mar+updated%3A2020-10-30..2020-12-11&type=Issues] | @agp8x [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aagp8x+updated%3A2020-10-30..2020-12-11&type=Issues] | @alexweav [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexweav+updated%3A2020-10-30..2020-12-11&type=Issues] | @belfhi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abelfhi+updated%3A2020-10-30..2020-12-11&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-10-30..2020-12-11&type=Issues] | @cbanek [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acbanek+updated%3A2020-10-30..2020-12-11&type=Issues] | @cmd-ntrf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acmd-ntrf+updated%3A2020-10-30..2020-12-11&type=Issues] | @coffeebenzene [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acoffeebenzene+updated%3A2020-10-30..2020-12-11&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-10-30..2020-12-11&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2020-10-30..2020-12-11&type=Issues] | @fcollonval [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Afcollonval+updated%3A2020-10-30..2020-12-11&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-10-30..2020-12-11&type=Issues] | @ianabc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aianabc+updated%3A2020-10-30..2020-12-11&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2020-10-30..2020-12-11&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-10-30..2020-12-11&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-10-30..2020-12-11&type=Issues] | @mhwasil [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amhwasil+updated%3A2020-10-30..2020-12-11&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-10-30..2020-12-11&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-10-30..2020-12-11&type=Issues] | @mxjeff [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amxjeff+updated%3A2020-10-30..2020-12-11&type=Issues] | @olifre [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aolifre+updated%3A2020-10-30..2020-12-11&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-10-30..2020-12-11&type=Issues] | @rgbkrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Argbkrk+updated%3A2020-10-30..2020-12-11&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-10-30..2020-12-11&type=Issues] | @Sangarshanan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ASangarshanan+updated%3A2020-10-30..2020-12-11&type=Issues] | @slemonide [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aslemonide+updated%3A2020-10-30..2020-12-11&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-10-30..2020-12-11&type=Issues] | @tlvu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atlvu+updated%3A2020-10-30..2020-12-11&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-10-30..2020-12-11&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-10-30..2020-12-11&type=Issues]

1.2

1.2.2 [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...1.2.2] 2020-11-27

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.2.1...41f291c0c973223c33a6aa1fa86d5d57f297be78])

Enhancements made

	Standardize “Sign in” capitalization on the login page #3252 [https://github.com/jupyterhub/jupyterhub/pull/3252] (@cmd-ntrf [https://github.com/cmd-ntrf])

Bugs fixed

	Fix RootHandler when default_url is a callable #3265 [https://github.com/jupyterhub/jupyterhub/pull/3265] (@danlester [https://github.com/danlester])

	Only preserve params when ?next= is unspecified #3261 [https://github.com/jupyterhub/jupyterhub/pull/3261] (@minrk [https://github.com/minrk])

	[Windows] Improve robustness when detecting and closing existing proxy processes #3237 [https://github.com/jupyterhub/jupyterhub/pull/3237] (@alexweav [https://github.com/alexweav])

Maintenance and upkeep improvements

	Environment marker on pamela #3255 [https://github.com/jupyterhub/jupyterhub/pull/3255] (@fcollonval [https://github.com/fcollonval])

	remove push-branch conditions for CI #3250 [https://github.com/jupyterhub/jupyterhub/pull/3250] (@minrk [https://github.com/minrk])

	Migrate from travis to GitHub actions #3246 [https://github.com/jupyterhub/jupyterhub/pull/3246] (@consideRatio [https://github.com/consideRatio])

Documentation improvements

	Update services-basics.md to use jupyterhub_idle_culler #3257 [https://github.com/jupyterhub/jupyterhub/pull/3257] (@manics [https://github.com/manics])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-10-30&to=2020-11-27&type=c])

@alexweav [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexweav+updated%3A2020-10-30..2020-11-27&type=Issues] | @belfhi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abelfhi+updated%3A2020-10-30..2020-11-27&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-10-30..2020-11-27&type=Issues] | @cmd-ntrf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acmd-ntrf+updated%3A2020-10-30..2020-11-27&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-10-30..2020-11-27&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2020-10-30..2020-11-27&type=Issues] | @fcollonval [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Afcollonval+updated%3A2020-10-30..2020-11-27&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-10-30..2020-11-27&type=Issues] | @ianabc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aianabc+updated%3A2020-10-30..2020-11-27&type=Issues] | @IvanaH8 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AIvanaH8+updated%3A2020-10-30..2020-11-27&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-10-30..2020-11-27&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-10-30..2020-11-27&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-10-30..2020-11-27&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-10-30..2020-11-27&type=Issues] | @olifre [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aolifre+updated%3A2020-10-30..2020-11-27&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-10-30..2020-11-27&type=Issues] | @rgbkrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Argbkrk+updated%3A2020-10-30..2020-11-27&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-10-30..2020-11-27&type=Issues] | @slemonide [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aslemonide+updated%3A2020-10-30..2020-11-27&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-10-30..2020-11-27&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-10-30..2020-11-27&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-10-30..2020-11-27&type=Issues]

1.2.1 [https://github.com/jupyterhub/jupyterhub/compare/1.2.0...1.2.1] 2020-10-30

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.2.0...1.2.1])

Bugs fixed

	JupyterHub services’ oauth_no_confirm configuration regression in 1.2.0 #3234 [https://github.com/jupyterhub/jupyterhub/pull/3234] (@bitnik [https://github.com/bitnik])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-10-29&to=2020-10-30&type=c])

@bitnik [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abitnik+updated%3A2020-10-29..2020-10-30&type=Issues]

1.2.0 [https://github.com/jupyterhub/jupyterhub/compare/1.1.0...1.2.0] 2020-10-29

JupyterHub 1.2 is an incremental release with lots of small improvements.
It is unlikely that users will have to change much to upgrade,
but lots of new things are possible and/or better!

There are no database schema changes requiring migration from 1.1 to 1.2.

Highlights:

	Deprecate black/whitelist configuration fields in favor of more inclusive blocked/allowed language. For example: c.Authenticator.allowed_users = {'user', ...}

	More configuration of page templates and service display

	Pagination of the admin page improving performance with large numbers of users

	Improved control of user redirect

	Support for jupyter-server [https://jupyter-server.readthedocs.io/en/latest/]-based single-user servers, such as Voilà [https://voila-gallery.org] and latest JupyterLab.

	Lots more improvements to documentation, HTML pages, and customizations

(full changelog [https://github.com/jupyterhub/jupyterhub/compare/1.1.0...1.2.0])

Enhancements made

	make pagination configurable #3229 [https://github.com/jupyterhub/jupyterhub/pull/3229] (@minrk [https://github.com/minrk])

	Make api_request to CHP’s REST API more reliable #3223 [https://github.com/jupyterhub/jupyterhub/pull/3223] (@consideRatio [https://github.com/consideRatio])

	Control service display #3160 [https://github.com/jupyterhub/jupyterhub/pull/3160] (@rcthomas [https://github.com/rcthomas])

	Add a footer block + wrap the admin footer in this block #3136 [https://github.com/jupyterhub/jupyterhub/pull/3136] (@pabepadu [https://github.com/pabepadu])

	Allow JupyterHub.default_url to be a callable #3133 [https://github.com/jupyterhub/jupyterhub/pull/3133] (@danlester [https://github.com/danlester])

	Allow head requests for the health endpoint #3131 [https://github.com/jupyterhub/jupyterhub/pull/3131] (@rkevin-arch [https://github.com/rkevin-arch])

	Hide hamburger button menu in mobile/responsive mode and fix other minor issues #3103 [https://github.com/jupyterhub/jupyterhub/pull/3103] (@kinow [https://github.com/kinow])

	build jupyterhub/jupyterhub-demo image on docker hub #3083 [https://github.com/jupyterhub/jupyterhub/pull/3083] (@minrk [https://github.com/minrk])

	Add JupyterHub Demo docker image #3059 [https://github.com/jupyterhub/jupyterhub/pull/3059] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Warn if both bind_url and ip/port/base_url are set #3057 [https://github.com/jupyterhub/jupyterhub/pull/3057] (@GeorgianaElena [https://github.com/GeorgianaElena])

	UI Feedback on Submit #3028 [https://github.com/jupyterhub/jupyterhub/pull/3028] (@possiblyMikeB [https://github.com/possiblyMikeB])

	Support kubespawner running on a IPv6 only cluster #3020 [https://github.com/jupyterhub/jupyterhub/pull/3020] (@stv0g [https://github.com/stv0g])

	Spawn with options passed in query arguments to /spawn #3013 [https://github.com/jupyterhub/jupyterhub/pull/3013] (@twalcari [https://github.com/twalcari])

	SpawnHandler POST with user form options displays the spawn-pending page #2978 [https://github.com/jupyterhub/jupyterhub/pull/2978] (@danlester [https://github.com/danlester])

	Start named servers by pressing the Enter key #2960 [https://github.com/jupyterhub/jupyterhub/pull/2960] (@jtpio [https://github.com/jtpio])

	Keep the URL fragments after spawning an application #2952 [https://github.com/jupyterhub/jupyterhub/pull/2952] (@kinow [https://github.com/kinow])

	Allow implicit spawn via javascript redirect #2941 [https://github.com/jupyterhub/jupyterhub/pull/2941] (@minrk [https://github.com/minrk])

	make init_spawners check O(running servers) not O(total users) #2936 [https://github.com/jupyterhub/jupyterhub/pull/2936] (@minrk [https://github.com/minrk])

	Add favicon to the base page template #2930 [https://github.com/jupyterhub/jupyterhub/pull/2930] (@JohnPaton [https://github.com/JohnPaton])

	Adding pagination in the admin panel #2929 [https://github.com/jupyterhub/jupyterhub/pull/2929] (@cbjuan [https://github.com/cbjuan])

	Generate prometheus metrics docs #2891 [https://github.com/jupyterhub/jupyterhub/pull/2891] (@rajat404 [https://github.com/rajat404])

	Add support for Jupyter Server #2601 [https://github.com/jupyterhub/jupyterhub/pull/2601] (@yuvipanda [https://github.com/yuvipanda])

Bugs fixed

	Fix #2284 must be sent from authorization page #3219 [https://github.com/jupyterhub/jupyterhub/pull/3219] (@elgalu [https://github.com/elgalu])

	avoid specifying default_value=None in Command traits #3208 [https://github.com/jupyterhub/jupyterhub/pull/3208] (@minrk [https://github.com/minrk])

	Prevent OverflowErrors in exponential_backoff() #3204 [https://github.com/jupyterhub/jupyterhub/pull/3204] (@kreuzert [https://github.com/kreuzert])

	update prometheus metrics for server spawn when it fails with exception #3150 [https://github.com/jupyterhub/jupyterhub/pull/3150] (@yhal-nesi [https://github.com/yhal-nesi])

	jupyterhub/utils: Load system default CA certificates in make_ssl_context #3140 [https://github.com/jupyterhub/jupyterhub/pull/3140] (@chancez [https://github.com/chancez])

	admin page sorts on spawner last_activity instead of user last_activity #3137 [https://github.com/jupyterhub/jupyterhub/pull/3137] (@lydian [https://github.com/lydian])

	Fix the services dropdown on the admin page #3132 [https://github.com/jupyterhub/jupyterhub/pull/3132] (@pabepadu [https://github.com/pabepadu])

	Don’t log a warning when slow_spawn_timeout is disabled #3127 [https://github.com/jupyterhub/jupyterhub/pull/3127] (@mriedem [https://github.com/mriedem])

	app.py: Work around incompatibility between Tornado 6 and asyncio proactor event loop in python 3.8 on Windows #3123 [https://github.com/jupyterhub/jupyterhub/pull/3123] (@alexweav [https://github.com/alexweav])

	jupyterhub/user: clear spawner state after post_stop_hook #3121 [https://github.com/jupyterhub/jupyterhub/pull/3121] (@rkdarst [https://github.com/rkdarst])

	fix for stopping named server deleting default server and tests #3109 [https://github.com/jupyterhub/jupyterhub/pull/3109] (@kxiao-fn [https://github.com/kxiao-fn])

	Hide hamburger button menu in mobile/responsive mode and fix other minor issues #3103 [https://github.com/jupyterhub/jupyterhub/pull/3103] (@kinow [https://github.com/kinow])

	Rename Authenticator.white/blacklist to allowed/blocked #3090 [https://github.com/jupyterhub/jupyterhub/pull/3090] (@minrk [https://github.com/minrk])

	Include the query string parameters when redirecting to a new URL #3089 [https://github.com/jupyterhub/jupyterhub/pull/3089] (@kinow [https://github.com/kinow])

	Make delete_invalid_users configurable #3087 [https://github.com/jupyterhub/jupyterhub/pull/3087] (@fcollonval [https://github.com/fcollonval])

	Ensure client dependencies build before wheel #3082 [https://github.com/jupyterhub/jupyterhub/pull/3082] (@diurnalist [https://github.com/diurnalist])

	make Spawner.environment config highest priority #3081 [https://github.com/jupyterhub/jupyterhub/pull/3081] (@minrk [https://github.com/minrk])

	Changing start my server button link to spawn url once server is stopped #3042 [https://github.com/jupyterhub/jupyterhub/pull/3042] (@rabsr [https://github.com/rabsr])

	Fix CSS on admin page version listing #3035 [https://github.com/jupyterhub/jupyterhub/pull/3035] (@vilhelmen [https://github.com/vilhelmen])

	Fix user_row endblock in admin template #3015 [https://github.com/jupyterhub/jupyterhub/pull/3015] (@jtpio [https://github.com/jtpio])

	Fix –generate-config bug when specifying a filename #2907 [https://github.com/jupyterhub/jupyterhub/pull/2907] (@consideRatio [https://github.com/consideRatio])

	Handle the protocol when ssl is enabled and log the right URL #2773 [https://github.com/jupyterhub/jupyterhub/pull/2773] (@kinow [https://github.com/kinow])

Maintenance and upkeep improvements

	Update travis-ci badge in README.md #3232 [https://github.com/jupyterhub/jupyterhub/pull/3232] (@consideRatio [https://github.com/consideRatio])

	stop building docs on circleci #3209 [https://github.com/jupyterhub/jupyterhub/pull/3209] (@minrk [https://github.com/minrk])

	Upgraded Jquery dep #3174 [https://github.com/jupyterhub/jupyterhub/pull/3174] (@AngelOnFira [https://github.com/AngelOnFira])

	Don’t allow ‘python:3.8 + master dependencies’ to fail #3157 [https://github.com/jupyterhub/jupyterhub/pull/3157] (@manics [https://github.com/manics])

	Update Dockerfile to ubuntu:focal (Python 3.8) #3156 [https://github.com/jupyterhub/jupyterhub/pull/3156] (@manics [https://github.com/manics])

	Simplify code of the health check handler #3149 [https://github.com/jupyterhub/jupyterhub/pull/3149] (@betatim [https://github.com/betatim])

	Get error description from error key vs error_description key #3147 [https://github.com/jupyterhub/jupyterhub/pull/3147] (@jgwerner [https://github.com/jgwerner])

	Implement singleuser with mixins #3128 [https://github.com/jupyterhub/jupyterhub/pull/3128] (@minrk [https://github.com/minrk])

	only build tagged versions on docker tags #3118 [https://github.com/jupyterhub/jupyterhub/pull/3118] (@minrk [https://github.com/minrk])

	Log slow_stop_timeout when hit like slow_spawn_timeout #3111 [https://github.com/jupyterhub/jupyterhub/pull/3111] (@mriedem [https://github.com/mriedem])

	loosen jupyter-telemetry pin #3102 [https://github.com/jupyterhub/jupyterhub/pull/3102] (@minrk [https://github.com/minrk])

	Remove old context-less print statement #3100 [https://github.com/jupyterhub/jupyterhub/pull/3100] (@mriedem [https://github.com/mriedem])

	Allow python:3.8 + master dependencies to fail #3079 [https://github.com/jupyterhub/jupyterhub/pull/3079] (@manics [https://github.com/manics])

	Test with some master dependencies. #3076 [https://github.com/jupyterhub/jupyterhub/pull/3076] (@Carreau [https://github.com/Carreau])

	synchronize implementation of expiring values #3072 [https://github.com/jupyterhub/jupyterhub/pull/3072] (@minrk [https://github.com/minrk])

	More consistent behavior for UserDict.get and key in UserDict #3071 [https://github.com/jupyterhub/jupyterhub/pull/3071] (@minrk [https://github.com/minrk])

	pin jupyter_telemetry dependency #3067 [https://github.com/jupyterhub/jupyterhub/pull/3067] (@Zsailer [https://github.com/Zsailer])

	Use the issue templates from the central repo #3056 [https://github.com/jupyterhub/jupyterhub/pull/3056] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Update links to the black GitHub repository #3054 [https://github.com/jupyterhub/jupyterhub/pull/3054] (@jtpio [https://github.com/jtpio])

	Log successful /health requests as debug level #3047 [https://github.com/jupyterhub/jupyterhub/pull/3047] (@consideRatio [https://github.com/consideRatio])

	Fix broken test due to BeautifulSoup 4.9.0 behavior change #3025 [https://github.com/jupyterhub/jupyterhub/pull/3025] (@twalcari [https://github.com/twalcari])

	Remove unused imports #3019 [https://github.com/jupyterhub/jupyterhub/pull/3019] (@stv0g [https://github.com/stv0g])

	Use pip instead of conda for building the docs on RTD #3010 [https://github.com/jupyterhub/jupyterhub/pull/3010] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Avoid redundant logging of jupyterhub version mismatches #2971 [https://github.com/jupyterhub/jupyterhub/pull/2971] (@mriedem [https://github.com/mriedem])

	Add .vscode to gitignore #2959 [https://github.com/jupyterhub/jupyterhub/pull/2959] (@jtpio [https://github.com/jtpio])

	preserve auth type when logging obfuscated auth header #2953 [https://github.com/jupyterhub/jupyterhub/pull/2953] (@minrk [https://github.com/minrk])

	make spawner:server relationship explicitly one to one #2944 [https://github.com/jupyterhub/jupyterhub/pull/2944] (@minrk [https://github.com/minrk])

	Add what we need with some margin to Dockerfile’s build stage #2905 [https://github.com/jupyterhub/jupyterhub/pull/2905] (@consideRatio [https://github.com/consideRatio])

	bump reorder-imports hook #2899 [https://github.com/jupyterhub/jupyterhub/pull/2899] (@minrk [https://github.com/minrk])

Documentation improvements

	Fix typo in documentation #3226 [https://github.com/jupyterhub/jupyterhub/pull/3226] (@xlotlu [https://github.com/xlotlu])

	[docs] Remove duplicate line in changelog for 1.1.0 #3207 [https://github.com/jupyterhub/jupyterhub/pull/3207] (@kinow [https://github.com/kinow])

	changelog for 1.2.0b1 #3192 [https://github.com/jupyterhub/jupyterhub/pull/3192] (@consideRatio [https://github.com/consideRatio])

	Add SELinux configuration for nginx #3185 [https://github.com/jupyterhub/jupyterhub/pull/3185] (@rainwoodman [https://github.com/rainwoodman])

	Mention the PAM pitfall on fedora. #3184 [https://github.com/jupyterhub/jupyterhub/pull/3184] (@rainwoodman [https://github.com/rainwoodman])

	Added extra documentation for endpoint /users/{name}/servers/{server_name}. #3159 [https://github.com/jupyterhub/jupyterhub/pull/3159] (@synchronizing [https://github.com/synchronizing])

	docs: please docs linter (move_cert docstring) #3151 [https://github.com/jupyterhub/jupyterhub/pull/3151] (@consideRatio [https://github.com/consideRatio])

	Needed NoEsacpe (NE) option for apache #3143 [https://github.com/jupyterhub/jupyterhub/pull/3143] (@basvandervlies [https://github.com/basvandervlies])

	Document external service api_tokens better #3142 [https://github.com/jupyterhub/jupyterhub/pull/3142] (@snickell [https://github.com/snickell])

	Remove idle culler example #3114 [https://github.com/jupyterhub/jupyterhub/pull/3114] (@yuvipanda [https://github.com/yuvipanda])

	docs: unsqueeze logo, remove unused CSS and templates #3107 [https://github.com/jupyterhub/jupyterhub/pull/3107] (@consideRatio [https://github.com/consideRatio])

	Update version in docs/rest-api.yaml #3104 [https://github.com/jupyterhub/jupyterhub/pull/3104] (@cmd-ntrf [https://github.com/cmd-ntrf])

	Replace zonca/remotespawner with NERSC/sshspawner #3086 [https://github.com/jupyterhub/jupyterhub/pull/3086] (@manics [https://github.com/manics])

	Remove already done named servers from roadmap #3084 [https://github.com/jupyterhub/jupyterhub/pull/3084] (@elgalu [https://github.com/elgalu])

	proxy settings might cause authentication errors #3078 [https://github.com/jupyterhub/jupyterhub/pull/3078] (@gatoniel [https://github.com/gatoniel])

	Add Configuration Reference section to docs #3077 [https://github.com/jupyterhub/jupyterhub/pull/3077] (@kinow [https://github.com/kinow])

	document upgrading from api_tokens to services config #3055 [https://github.com/jupyterhub/jupyterhub/pull/3055] (@minrk [https://github.com/minrk])

	[Docs] Disable proxy_buffering when using nginx reverse proxy #3048 [https://github.com/jupyterhub/jupyterhub/pull/3048] (@mhwasil [https://github.com/mhwasil])

	docs: add proxy_http_version 1.1 #3046 [https://github.com/jupyterhub/jupyterhub/pull/3046] (@ceocoder [https://github.com/ceocoder])

	#1018 PAM added in prerequisites #3040 [https://github.com/jupyterhub/jupyterhub/pull/3040] (@romainx [https://github.com/romainx])

	Fix use of auxiliary verb on index.rst #3022 [https://github.com/jupyterhub/jupyterhub/pull/3022] (@joshmeek [https://github.com/joshmeek])

	Fix docs CI test failure: duplicate object description #3021 [https://github.com/jupyterhub/jupyterhub/pull/3021] (@rkdarst [https://github.com/rkdarst])

	Update issue templates #3001 [https://github.com/jupyterhub/jupyterhub/pull/3001] (@GeorgianaElena [https://github.com/GeorgianaElena])

	fix wrong name on firewall #2997 [https://github.com/jupyterhub/jupyterhub/pull/2997] (@thuvh [https://github.com/thuvh])

	updating docs theme #2995 [https://github.com/jupyterhub/jupyterhub/pull/2995] (@choldgraf [https://github.com/choldgraf])

	Update contributor docs #2972 [https://github.com/jupyterhub/jupyterhub/pull/2972] (@mriedem [https://github.com/mriedem])

	Server.user_options rest-api documented #2966 [https://github.com/jupyterhub/jupyterhub/pull/2966] (@mriedem [https://github.com/mriedem])

	Pin sphinx theme #2956 [https://github.com/jupyterhub/jupyterhub/pull/2956] (@manics [https://github.com/manics])

	[doc] Fix couple typos in the documentation #2951 [https://github.com/jupyterhub/jupyterhub/pull/2951] (@kinow [https://github.com/kinow])

	Docs: Fixed grammar on landing page #2950 [https://github.com/jupyterhub/jupyterhub/pull/2950] (@alexdriedger [https://github.com/alexdriedger])

	add general faq #2946 [https://github.com/jupyterhub/jupyterhub/pull/2946] (@minrk [https://github.com/minrk])

	docs: use metachannel for faster environment solve #2943 [https://github.com/jupyterhub/jupyterhub/pull/2943] (@minrk [https://github.com/minrk])

	update docs environments #2942 [https://github.com/jupyterhub/jupyterhub/pull/2942] (@minrk [https://github.com/minrk])

	[doc] Add more docs about Cookies used for authentication in JupyterHub #2940 [https://github.com/jupyterhub/jupyterhub/pull/2940] (@kinow [https://github.com/kinow])

	[doc] Use fixed commit plus line number in github link #2939 [https://github.com/jupyterhub/jupyterhub/pull/2939] (@kinow [https://github.com/kinow])

	[doc] Fix link to SSL encryption from troubleshooting page #2938 [https://github.com/jupyterhub/jupyterhub/pull/2938] (@kinow [https://github.com/kinow])

	rest api: fix schema for remove parameter in rest api #2917 [https://github.com/jupyterhub/jupyterhub/pull/2917] (@minrk [https://github.com/minrk])

	Add troubleshooting topics #2914 [https://github.com/jupyterhub/jupyterhub/pull/2914] (@jgwerner [https://github.com/jgwerner])

	Several fixes to the doc #2904 [https://github.com/jupyterhub/jupyterhub/pull/2904] (@reneluria [https://github.com/reneluria])

	fix: ‘Non-ASCII character ‘\xc3’ #2901 [https://github.com/jupyterhub/jupyterhub/pull/2901] (@jgwerner [https://github.com/jgwerner])

	Generate prometheus metrics docs #2891 [https://github.com/jupyterhub/jupyterhub/pull/2891] (@rajat404 [https://github.com/rajat404])

Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyterhub/jupyterhub/graphs/contributors?from=2020-01-17&to=2020-10-29&type=c])

@0nebody [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A0nebody+updated%3A2020-01-17..2020-10-29&type=Issues] | @1kastner [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3A1kastner+updated%3A2020-01-17..2020-10-29&type=Issues] | @ahkui [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aahkui+updated%3A2020-01-17..2020-10-29&type=Issues] | @alexdriedger [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexdriedger+updated%3A2020-01-17..2020-10-29&type=Issues] | @alexweav [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aalexweav+updated%3A2020-01-17..2020-10-29&type=Issues] | @AlJohri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAlJohri+updated%3A2020-01-17..2020-10-29&type=Issues] | @Analect [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAnalect+updated%3A2020-01-17..2020-10-29&type=Issues] | @analytically [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aanalytically+updated%3A2020-01-17..2020-10-29&type=Issues] | @aneagoe [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aaneagoe+updated%3A2020-01-17..2020-10-29&type=Issues] | @AngelOnFira [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AAngelOnFira+updated%3A2020-01-17..2020-10-29&type=Issues] | @barrachri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abarrachri+updated%3A2020-01-17..2020-10-29&type=Issues] | @basvandervlies [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abasvandervlies+updated%3A2020-01-17..2020-10-29&type=Issues] | @betatim [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abetatim+updated%3A2020-01-17..2020-10-29&type=Issues] | @bigbosst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Abigbosst+updated%3A2020-01-17..2020-10-29&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ablink1073+updated%3A2020-01-17..2020-10-29&type=Issues] | @Cadair [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ACadair+updated%3A2020-01-17..2020-10-29&type=Issues] | @Carreau [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ACarreau+updated%3A2020-01-17..2020-10-29&type=Issues] | @cbjuan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acbjuan+updated%3A2020-01-17..2020-10-29&type=Issues] | @ceocoder [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aceocoder+updated%3A2020-01-17..2020-10-29&type=Issues] | @chancez [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Achancez+updated%3A2020-01-17..2020-10-29&type=Issues] | @choldgraf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acholdgraf+updated%3A2020-01-17..2020-10-29&type=Issues] | @Chrisjw42 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AChrisjw42+updated%3A2020-01-17..2020-10-29&type=Issues] | @cmd-ntrf [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Acmd-ntrf+updated%3A2020-01-17..2020-10-29&type=Issues] | @consideRatio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AconsideRatio+updated%3A2020-01-17..2020-10-29&type=Issues] | @danlester [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adanlester+updated%3A2020-01-17..2020-10-29&type=Issues] | @diurnalist [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adiurnalist+updated%3A2020-01-17..2020-10-29&type=Issues] | @Dmitry1987 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ADmitry1987+updated%3A2020-01-17..2020-10-29&type=Issues] | @dsblank [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adsblank+updated%3A2020-01-17..2020-10-29&type=Issues] | @dylex [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Adylex+updated%3A2020-01-17..2020-10-29&type=Issues] | @echarles [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aecharles+updated%3A2020-01-17..2020-10-29&type=Issues] | @elgalu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aelgalu+updated%3A2020-01-17..2020-10-29&type=Issues] | @fcollonval [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Afcollonval+updated%3A2020-01-17..2020-10-29&type=Issues] | @gatoniel [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Agatoniel+updated%3A2020-01-17..2020-10-29&type=Issues] | @GeorgianaElena [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AGeorgianaElena+updated%3A2020-01-17..2020-10-29&type=Issues] | @hnykda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ahnykda+updated%3A2020-01-17..2020-10-29&type=Issues] | @itssimon [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aitssimon+updated%3A2020-01-17..2020-10-29&type=Issues] | @jgwerner [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajgwerner+updated%3A2020-01-17..2020-10-29&type=Issues] | @JohnPaton [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AJohnPaton+updated%3A2020-01-17..2020-10-29&type=Issues] | @joshmeek [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajoshmeek+updated%3A2020-01-17..2020-10-29&type=Issues] | @jtpio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ajtpio+updated%3A2020-01-17..2020-10-29&type=Issues] | @kinow [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akinow+updated%3A2020-01-17..2020-10-29&type=Issues] | @kreuzert [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akreuzert+updated%3A2020-01-17..2020-10-29&type=Issues] | @kxiao-fn [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Akxiao-fn+updated%3A2020-01-17..2020-10-29&type=Issues] | @lesiano [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alesiano+updated%3A2020-01-17..2020-10-29&type=Issues] | @limimiking [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alimimiking+updated%3A2020-01-17..2020-10-29&type=Issues] | @lydian [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Alydian+updated%3A2020-01-17..2020-10-29&type=Issues] | @mabbasi90 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amabbasi90+updated%3A2020-01-17..2020-10-29&type=Issues] | @maluhoss [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amaluhoss+updated%3A2020-01-17..2020-10-29&type=Issues] | @manics [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amanics+updated%3A2020-01-17..2020-10-29&type=Issues] | @matteoipri [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amatteoipri+updated%3A2020-01-17..2020-10-29&type=Issues] | @mbmilligan [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ambmilligan+updated%3A2020-01-17..2020-10-29&type=Issues] | @meeseeksmachine [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ameeseeksmachine+updated%3A2020-01-17..2020-10-29&type=Issues] | @mhwasil [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amhwasil+updated%3A2020-01-17..2020-10-29&type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aminrk+updated%3A2020-01-17..2020-10-29&type=Issues] | @mriedem [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Amriedem+updated%3A2020-01-17..2020-10-29&type=Issues] | @nscozzaro [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Anscozzaro+updated%3A2020-01-17..2020-10-29&type=Issues] | @pabepadu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apabepadu+updated%3A2020-01-17..2020-10-29&type=Issues] | @possiblyMikeB [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ApossiblyMikeB+updated%3A2020-01-17..2020-10-29&type=Issues] | @psyvision [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Apsyvision+updated%3A2020-01-17..2020-10-29&type=Issues] | @rabsr [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arabsr+updated%3A2020-01-17..2020-10-29&type=Issues] | @rainwoodman [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arainwoodman+updated%3A2020-01-17..2020-10-29&type=Issues] | @rajat404 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arajat404+updated%3A2020-01-17..2020-10-29&type=Issues] | @rcthomas [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arcthomas+updated%3A2020-01-17..2020-10-29&type=Issues] | @reneluria [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Areneluria+updated%3A2020-01-17..2020-10-29&type=Issues] | @rgbkrk [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Argbkrk+updated%3A2020-01-17..2020-10-29&type=Issues] | @rkdarst [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkdarst+updated%3A2020-01-17..2020-10-29&type=Issues] | @rkevin-arch [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Arkevin-arch+updated%3A2020-01-17..2020-10-29&type=Issues] | @romainx [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aromainx+updated%3A2020-01-17..2020-10-29&type=Issues] | @ryanlovett [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryanlovett+updated%3A2020-01-17..2020-10-29&type=Issues] | @ryogesh [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aryogesh+updated%3A2020-01-17..2020-10-29&type=Issues] | @sdague [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asdague+updated%3A2020-01-17..2020-10-29&type=Issues] | @snickell [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asnickell+updated%3A2020-01-17..2020-10-29&type=Issues] | @SonakshiGrover [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3ASonakshiGrover+updated%3A2020-01-17..2020-10-29&type=Issues] | @ssanderson [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Assanderson+updated%3A2020-01-17..2020-10-29&type=Issues] | @stefanvangastel [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astefanvangastel+updated%3A2020-01-17..2020-10-29&type=Issues] | @steinad [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asteinad+updated%3A2020-01-17..2020-10-29&type=Issues] | @stephen-a2z [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astephen-a2z+updated%3A2020-01-17..2020-10-29&type=Issues] | @stevegore [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astevegore+updated%3A2020-01-17..2020-10-29&type=Issues] | @stv0g [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Astv0g+updated%3A2020-01-17..2020-10-29&type=Issues] | @subgero [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asubgero+updated%3A2020-01-17..2020-10-29&type=Issues] | @sudi007 [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asudi007+updated%3A2020-01-17..2020-10-29&type=Issues] | @summerswallow [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asummerswallow+updated%3A2020-01-17..2020-10-29&type=Issues] | @support [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asupport+updated%3A2020-01-17..2020-10-29&type=Issues] | @synchronizing [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Asynchronizing+updated%3A2020-01-17..2020-10-29&type=Issues] | @thuvh [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Athuvh+updated%3A2020-01-17..2020-10-29&type=Issues] | @tritemio [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atritemio+updated%3A2020-01-17..2020-10-29&type=Issues] | @twalcari [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Atwalcari+updated%3A2020-01-17..2020-10-29&type=Issues] | @vchandvankar [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avchandvankar+updated%3A2020-01-17..2020-10-29&type=Issues] | @vilhelmen [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avilhelmen+updated%3A2020-01-17..2020-10-29&type=Issues] | @vlizanae [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Avlizanae+updated%3A2020-01-17..2020-10-29&type=Issues] | @weimin [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aweimin+updated%3A2020-01-17..2020-10-29&type=Issues] | @welcome [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awelcome+updated%3A2020-01-17..2020-10-29&type=Issues] | @willingc [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Awillingc+updated%3A2020-01-17..2020-10-29&type=Issues] | @xlotlu [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Axlotlu+updated%3A2020-01-17..2020-10-29&type=Issues] | @yhal-nesi [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayhal-nesi+updated%3A2020-01-17..2020-10-29&type=Issues] | @ynnelson [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Aynnelson+updated%3A2020-01-17..2020-10-29&type=Issues] | @yuvipanda [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Ayuvipanda+updated%3A2020-01-17..2020-10-29&type=Issues] | @zonca [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3Azonca+updated%3A2020-01-17..2020-10-29&type=Issues] | @Zsailer [https://github.com/search?q=repo%3Ajupyterhub%2Fjupyterhub+involves%3AZsailer+updated%3A2020-01-17..2020-10-29&type=Issues]

1.1

1.1.0 [https://github.com/jupyterhub/jupyterhub/compare/1.0.0...1.1.0] 2020-01-17

1.1 is a release with lots of accumulated fixes and improvements,
especially in performance, metrics, and customization.
There are no database changes in 1.1, so no database upgrade is required
when upgrading from 1.0 to 1.1.

Of particular interest to deployments with automatic health checking and/or large numbers of users is that the slow startup time
introduced in 1.0 by additional spawner validation can now be mitigated by JupyterHub.init_spawners_timeout,
allowing the Hub to become responsive before the spawners may have finished validating.

Several new Prometheus metrics are added (and others fixed!)
to measure sources of common performance issues,
such as proxy interactions and startup.

1.1 also begins adoption of the Jupyter telemetry project in JupyterHub,
See The Jupyter Telemetry docs [https://jupyter-telemetry.readthedocs.io]
for more info. The only events so far are starting and stopping servers,
but more will be added in future releases.

There are many more fixes and improvements listed below.
Thanks to everyone who has contributed to this release!

New

	LocalProcessSpawner should work on windows by using psutil.pid_exists #2882 [https://github.com/jupyterhub/jupyterhub/pull/2882] (@ociule [https://github.com/ociule])

	trigger auth_state_hook prior to options form, add auth_state to template namespace #2881 [https://github.com/jupyterhub/jupyterhub/pull/2881] (@minrk [https://github.com/minrk])

	Added guide ‘install jupyterlab the hard way’ #2110 #2842 [https://github.com/jupyterhub/jupyterhub/pull/2842] (@mangecoeur [https://github.com/mangecoeur])

	Add prometheus metric to measure hub startup time #2799 [https://github.com/jupyterhub/jupyterhub/pull/2799] (@rajat404 [https://github.com/rajat404])

	Add Spawner.auth_state_hook #2555 [https://github.com/jupyterhub/jupyterhub/pull/2555] (@rcthomas [https://github.com/rcthomas])

	Link services from jupyterhub pages #2763 [https://github.com/jupyterhub/jupyterhub/pull/2763] (@rcthomas [https://github.com/rcthomas])

	JupyterHub.user_redirect_hook is added to allow admins to customize /user-redirect/ behavior #2790 [https://github.com/jupyterhub/jupyterhub/pull/2790] (@yuvipanda [https://github.com/yuvipanda])

	Add prometheus metric to measure hub startup time #2799 [https://github.com/jupyterhub/jupyterhub/pull/2799] (@rajat404 [https://github.com/rajat404])

	Add prometheus metric to measure proxy route poll times #2798 [https://github.com/jupyterhub/jupyterhub/pull/2798] (@rajat404 [https://github.com/rajat404])

	PROXY_DELETE_DURATION_SECONDS prometheus metric is added, to measure proxy route deletion times #2788 [https://github.com/jupyterhub/jupyterhub/pull/2788] (@rajat404 [https://github.com/rajat404])

	Service.oauth_no_confirm is added, it is useful for admin-managed services that are considered part of the Hub and shouldn’t need to prompt the user for access #2767 [https://github.com/jupyterhub/jupyterhub/pull/2767] (@minrk [https://github.com/minrk])

	JupyterHub.default_server_name is added to make the default server be a named server with provided name #2735 [https://github.com/jupyterhub/jupyterhub/pull/2735] (@krinsman [https://github.com/krinsman])

	JupyterHub.init_spawners_timeout is introduced to combat slow startups on large JupyterHub deployments #2721 [https://github.com/jupyterhub/jupyterhub/pull/2721] (@minrk [https://github.com/minrk])

	The configuration uids for local authenticators is added to consistently assign users UNIX id’s between installations #2687 [https://github.com/jupyterhub/jupyterhub/pull/2687] (@rgerkin [https://github.com/rgerkin])

	JupyterHub.activity_resolution is introduced with a default value of 30s improving performance by not updating the database with user activity too often #2605 [https://github.com/jupyterhub/jupyterhub/pull/2605] (@minrk [https://github.com/minrk])

	HubAuth [https://jupyterhub.readthedocs.io/en/stable/api/services.auth.html#jupyterhub.services.auth.HubAuth]’s SSL configuration can now be set through environment variables #2588 [https://github.com/jupyterhub/jupyterhub/pull/2588] (@cmd-ntrf [https://github.com/cmd-ntrf])

	Expose spawner.user_options in REST API. #2755 [https://github.com/jupyterhub/jupyterhub/pull/2755] (@danielballan [https://github.com/danielballan])

	add block for scripts included in head #2828 [https://github.com/jupyterhub/jupyterhub/pull/2828] (@bitnik [https://github.com/bitnik])

	Instrument JupyterHub to record events with jupyter_telemetry [Part II] #2698 [https://github.com/jupyterhub/jupyterhub/pull/2698] (@Zsailer [https://github.com/Zsailer])

	Make announcements visible without custom HTML #2570 [https://github.com/jupyterhub/jupyterhub/pull/2570] (@consideRatio [https://github.com/consideRatio])

	Display server version on admin page #2776 [https://github.com/jupyterhub/jupyterhub/pull/2776] (@vilhelmen [https://github.com/vilhelmen])

Fixes

	Bugfix: pam_normalize_username didn’t return username #2876 [https://github.com/jupyterhub/jupyterhub/pull/2876] (@rkdarst [https://github.com/rkdarst])

	Cleanup if spawner stop fails #2849 [https://github.com/jupyterhub/jupyterhub/pull/2849] (@gabber12 [https://github.com/gabber12])

	Fix an issue occurring with the default spawner and internal_ssl enabled #2785 [https://github.com/jupyterhub/jupyterhub/pull/2785] (@rpwagner [https://github.com/rpwagner])

	Fix named servers to not be spawnable unless activated #2772 [https://github.com/jupyterhub/jupyterhub/pull/2772] (@bitnik [https://github.com/bitnik])

	JupyterHub now awaits proxy availability before accepting web requests #2750 [https://github.com/jupyterhub/jupyterhub/pull/2750] (@minrk [https://github.com/minrk])

	Fix a no longer valid assumption that MySQL and MariaDB need to have innodb_file_format and innodb_large_prefix configured #2712 [https://github.com/jupyterhub/jupyterhub/pull/2712] (@chicocvenancio [https://github.com/chicocvenancio])

	Login/Logout button now updates to Login on logout #2705 [https://github.com/jupyterhub/jupyterhub/pull/2705] (@aar0nTw [https://github.com/aar0nTw])

	Fix handling of exceptions within pre_spawn_start hooks #2684 [https://github.com/jupyterhub/jupyterhub/pull/2684] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix an issue where a user could end up spawning a default server instead of a named server as intended #2682 [https://github.com/jupyterhub/jupyterhub/pull/2682] (@rcthomas [https://github.com/rcthomas])

	/hub/admin now redirects to login if unauthenticated #2670 [https://github.com/jupyterhub/jupyterhub/pull/2670] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix spawning of users with names containing characters that needs to be escaped #2648 [https://github.com/jupyterhub/jupyterhub/pull/2648] (@nicorikken [https://github.com/nicorikken])

	Fix TOTAL_USERS prometheus metric #2637 [https://github.com/jupyterhub/jupyterhub/pull/2637] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix RUNNING_SERVERS prometheus metric #2629 [https://github.com/jupyterhub/jupyterhub/pull/2629] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Fix faulty redirects to 404 that could occur with the use of named servers #2594 [https://github.com/jupyterhub/jupyterhub/pull/2594] (@vilhelmen [https://github.com/vilhelmen])

	JupyterHub API spec is now a valid OpenAPI spec #2590 [https://github.com/jupyterhub/jupyterhub/pull/2590] (@sbrunk [https://github.com/sbrunk])

	Use of --help or --version previously could output unrelated errors #2584 [https://github.com/jupyterhub/jupyterhub/pull/2584] (@minrk [https://github.com/minrk])

	No longer crash on startup in Windows #2560 [https://github.com/jupyterhub/jupyterhub/pull/2560] (@adelcast [https://github.com/adelcast])

	Escape usernames in the frontend #2640 [https://github.com/jupyterhub/jupyterhub/pull/2640] (@nicorikken [https://github.com/nicorikken])

Maintenance

	Optimize CI jobs and default to bionic #2897 [https://github.com/jupyterhub/jupyterhub/pull/2897] (@consideRatio [https://github.com/consideRatio])

	catch connection error for ssl failures #2889 [https://github.com/jupyterhub/jupyterhub/pull/2889] (@minrk [https://github.com/minrk])

	Fix implementation of default server name #2887 [https://github.com/jupyterhub/jupyterhub/pull/2887] (@krinsman [https://github.com/krinsman])

	fixup allow_failures #2880 [https://github.com/jupyterhub/jupyterhub/pull/2880] (@minrk [https://github.com/minrk])

	Pass tests on Python 3.8 #2879 [https://github.com/jupyterhub/jupyterhub/pull/2879] (@minrk [https://github.com/minrk])

	Fixup .travis.yml #2868 [https://github.com/jupyterhub/jupyterhub/pull/2868] (@consideRatio [https://github.com/consideRatio])

	Update README’s badges #2867 [https://github.com/jupyterhub/jupyterhub/pull/2867] (@consideRatio [https://github.com/consideRatio])

	Dockerfile: add build-essential to builder image #2866 [https://github.com/jupyterhub/jupyterhub/pull/2866] (@rkdarst [https://github.com/rkdarst])

	Dockerfile: Copy share/ to the final image #2864 [https://github.com/jupyterhub/jupyterhub/pull/2864] (@rkdarst [https://github.com/rkdarst])

	chore: Dockerfile updates #2853 [https://github.com/jupyterhub/jupyterhub/pull/2853] (@jgwerner [https://github.com/jgwerner])

	simplify Dockerfile #2840 [https://github.com/jupyterhub/jupyterhub/pull/2840] (@minrk [https://github.com/minrk])

	docker: fix onbuild image arg #2839 [https://github.com/jupyterhub/jupyterhub/pull/2839] (@minrk [https://github.com/minrk])

	remove redundant pip package list in docs environment.yml #2838 [https://github.com/jupyterhub/jupyterhub/pull/2838] (@minrk [https://github.com/minrk])

	docs: Update docs to run tests #2812 [https://github.com/jupyterhub/jupyterhub/pull/2812] (@jgwerner [https://github.com/jgwerner])

	remove redundant pip package list in docs environment.yml #2838 [https://github.com/jupyterhub/jupyterhub/pull/2838] (@minrk [https://github.com/minrk])

	updating to pandas docs theme #2820 [https://github.com/jupyterhub/jupyterhub/pull/2820] (@choldgraf [https://github.com/choldgraf])

	Adding institutional faq #2800 [https://github.com/jupyterhub/jupyterhub/pull/2800] (@choldgraf [https://github.com/choldgraf])

	Add inline comment to test #2826 [https://github.com/jupyterhub/jupyterhub/pull/2826] (@consideRatio [https://github.com/consideRatio])

	Raise error on missing specified config #2824 [https://github.com/jupyterhub/jupyterhub/pull/2824] (@consideRatio [https://github.com/consideRatio])

	chore: Refactor Dockerfile #2816 [https://github.com/jupyterhub/jupyterhub/pull/2816] (@jgwerner [https://github.com/jgwerner])

	chore: Update python versions in travis matrix #2811 [https://github.com/jupyterhub/jupyterhub/pull/2811] (@jgwerner [https://github.com/jgwerner])

	chore: Bump package versions used in pre-commit config #2810 [https://github.com/jupyterhub/jupyterhub/pull/2810] (@jgwerner [https://github.com/jgwerner])

	adding docs preview to circleci #2803 [https://github.com/jupyterhub/jupyterhub/pull/2803] (@choldgraf [https://github.com/choldgraf])

	adding institutional faq #2800 [https://github.com/jupyterhub/jupyterhub/pull/2800] (@choldgraf [https://github.com/choldgraf])

	The proxy’s REST API listens on port 8001 #2795 [https://github.com/jupyterhub/jupyterhub/pull/2795] (@bnuhero [https://github.com/bnuhero])

	cull_idle_servers.py: rebind max_age and inactive_limit locally #2794 [https://github.com/jupyterhub/jupyterhub/pull/2794] (@rkdarst [https://github.com/rkdarst])

	Fix deprecation warnings #2789 [https://github.com/jupyterhub/jupyterhub/pull/2789] (@tirkarthi [https://github.com/tirkarthi])

	Log proxy class #2783 [https://github.com/jupyterhub/jupyterhub/pull/2783] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Add docs for fixtures in CONTRIBUTING.md #2782 [https://github.com/jupyterhub/jupyterhub/pull/2782] (@kinow [https://github.com/kinow])

	Fix header project name typo #2775 [https://github.com/jupyterhub/jupyterhub/pull/2775] (@kinow [https://github.com/kinow])

	Remove unused setupegg.py #2774 [https://github.com/jupyterhub/jupyterhub/pull/2774] (@kinow [https://github.com/kinow])

	Log JupyterHub version on startup #2752 [https://github.com/jupyterhub/jupyterhub/pull/2752] (@consideRatio [https://github.com/consideRatio])

	Reduce verbosity for “Failing suspected API request to not-running server” (new) #2751 [https://github.com/jupyterhub/jupyterhub/pull/2751] (@rkdarst [https://github.com/rkdarst])

	Add missing package for json schema doc build #2744 [https://github.com/jupyterhub/jupyterhub/pull/2744] (@willingc [https://github.com/willingc])

	block urllib3 versions with encoding bug #2743 [https://github.com/jupyterhub/jupyterhub/pull/2743] (@minrk [https://github.com/minrk])

	Remove tornado deprecated/unnecessary AsyncIOMainLoop().install() call #2740 [https://github.com/jupyterhub/jupyterhub/pull/2740] (@kinow [https://github.com/kinow])

	Fix deprecated call #2739 [https://github.com/jupyterhub/jupyterhub/pull/2739] (@kinow [https://github.com/kinow])

	Remove duplicate hub and authenticator traitlets from Spawner #2736 [https://github.com/jupyterhub/jupyterhub/pull/2736] (@eslavich [https://github.com/eslavich])

	Update issue template #2725 [https://github.com/jupyterhub/jupyterhub/pull/2725] (@willingc [https://github.com/willingc])

	Use autodoc-traits sphinx extension #2723 [https://github.com/jupyterhub/jupyterhub/pull/2723] (@willingc [https://github.com/willingc])

	Add New Server: change redirecting to relative to home page in js #2714 [https://github.com/jupyterhub/jupyterhub/pull/2714] (@bitnik [https://github.com/bitnik])

	Create a warning when creating a service implicitly from service_tokens #2704 [https://github.com/jupyterhub/jupyterhub/pull/2704] (@katsar0v [https://github.com/katsar0v])

	Fix mistypos #2702 [https://github.com/jupyterhub/jupyterhub/pull/2702] (@rlukin [https://github.com/rlukin])

	Add Jupyter community link #2696 [https://github.com/jupyterhub/jupyterhub/pull/2696] (@mattjshannon [https://github.com/mattjshannon])

	Fix failing travis tests #2695 [https://github.com/jupyterhub/jupyterhub/pull/2695] (@GeorgianaElena [https://github.com/GeorgianaElena])

	Documentation update: hint for using services instead of service tokens. #2679 [https://github.com/jupyterhub/jupyterhub/pull/2679] (@katsar0v [https://github.com/katsar0v])

	Replace header logo: jupyter -> jupyterhub #2672 [https://github.com/jupyterhub/jupyterhub/pull/2672] (@consideRatio [https://github.com/consideRatio])

	Update spawn-form example #2662 [https://github.com/jupyterhub/jupyterhub/pull/2662] (@kinow [https://github.com/kinow])

	Update flask hub authentication services example in doc #2658 [https://github.com/jupyterhub/jupyterhub/pull/2658] (@cmd-ntrf [https://github.com/cmd-ntrf])

	close <div class="container"> tag in home.html #2649 [https://github.com/jupyterhub/jupyterhub/pull/2649] (@bitnik [https://github.com/bitnik])

	Some theme updates; no double NEXT/PREV buttons. #2647 [https://github.com/jupyterhub/jupyterhub/pull/2647] (@Carreau [https://github.com/Carreau])

	fix typos on technical reference documentation #2646 [https://github.com/jupyterhub/jupyterhub/pull/2646] (@ilee38 [https://github.com/ilee38])

	Update links for Hadoop-related subprojects #2645 [https://github.com/jupyterhub/jupyterhub/pull/2645] (@jcrist [https://github.com/jcrist])

	corrected docker network create instructions in dockerfiles README #2632 [https://github.com/jupyterhub/jupyterhub/pull/2632] (@bartolone [https://github.com/bartolone])

	Fixed docs and testing code to use refactored SimpleLocalProcessSpawner #2631 [https://github.com/jupyterhub/jupyterhub/pull/2631] (@danlester [https://github.com/danlester])

	Update the config used for testing #2628 [https://github.com/jupyterhub/jupyterhub/pull/2628] (@jtpio [https://github.com/jtpio])

	Update doc: do not suggest depricated config key #2626 [https://github.com/jupyterhub/jupyterhub/pull/2626] (@lumbric [https://github.com/lumbric])

	Add missing words #2625 [https://github.com/jupyterhub/jupyterhub/pull/2625] (@remram44 [https://github.com/remram44])

	cull-idle: Include a hint on how to add custom culling logic #2613 [https://github.com/jupyterhub/jupyterhub/pull/2613] (@rkdarst [https://github.com/rkdarst])

	Replace existing redirect code by Tornado’s addslash decorator #2609 [https://github.com/jupyterhub/jupyterhub/pull/2609] (@kinow [https://github.com/kinow])

	Hide Stop My Server red button after server stopped. #2577 [https://github.com/jupyterhub/jupyterhub/pull/2577] (@aar0nTw [https://github.com/aar0nTw])

	Update link of changelog #2565 [https://github.com/jupyterhub/jupyterhub/pull/2565] (@iblis17 [https://github.com/iblis17])

	typo #2564 [https://github.com/jupyterhub/jupyterhub/pull/2564] (@julienchastang [https://github.com/julienchastang])

	Update to simplify the language related to spawner options #2558 [https://github.com/jupyterhub/jupyterhub/pull/2558] (@NikeNano [https://github.com/NikeNano])

	Adding the use case of the Elucidata: How Jupyter Notebook is used in… #2548 [https://github.com/jupyterhub/jupyterhub/pull/2548] (@IamViditAgarwal [https://github.com/IamViditAgarwal])

	Dict rewritten as literal #2546 [https://github.com/jupyterhub/jupyterhub/pull/2546] (@remyleone [https://github.com/remyleone])

1.0

1.0.0 [https://github.com/jupyterhub/jupyterhub/compare/0.9.6...1.0.0] 2019-05-03

JupyterHub 1.0 is a major milestone for JupyterHub.
Huge thanks to the many people who have contributed to this release,
whether it was through discussion, testing, documentation, or development.

Major new features

	Support TLS encryption and authentication of all internal communication.
Spawners must implement .move_certs method to make certificates available
to the notebook server if it is not local to the Hub.

	There is now full UI support for managing named servers.
With named servers, each jupyterhub user may have access to more than one named server. For example, a professor may access a server named research and another named teaching.

[image: named servers on the home page]

	Authenticators can now expire and refresh authentication data by implementing
Authenticator.refresh_user(user).
This allows things like OAuth data and access tokens to be refreshed.
When used together with Authenticator.refresh_pre_spawn = True,
auth refresh can be forced prior to Spawn,
allowing the Authenticator to require that authentication data is fresh
immediately before the user’s server is launched.

See also

	Authenticator.refresh_user()

	Spawner.create_certs()

	Spawner.move_certs()

New features

	allow custom spawners, authenticators, and proxies to register themselves via ‘entry points’, enabling more convenient configuration such as:

c.JupyterHub.authenticator_class = 'github'
c.JupyterHub.spawner_class = 'docker'
c.JupyterHub.proxy_class = 'traefik_etcd'

	Spawners are passed the tornado Handler object that requested their spawn (as self.handler),
so they can do things like make decisions based on query arguments in the request.

	SimpleSpawner and DummyAuthenticator, which are useful for testing, have been merged into JupyterHub itself:

For testing purposes only. Should not be used in production.
c.JupyterHub.authenticator_class = 'dummy'
c.JupyterHub.spawner_class = 'simple'

These classes are not appropriate for production use. Only testing.

	Add health check endpoint at /hub/health

	Several prometheus metrics have been added (thanks to Outreachy [https://www.outreachy.org/] applicants!)

	A new API for registering user activity.
To prepare for the addition of alternate proxy implementations [https://github.com/jupyterhub/traefik-proxy],
responsibility for tracking activity is taken away from the proxy
and moved to the notebook server (which already has activity tracking features).
Activity is now tracked by pushing it to the Hub from user servers instead of polling the
proxy API.

	Dynamic options_form callables may now return an empty string
which will result in no options form being rendered.

	Spawner.user_options is persisted to the database to be re-used,
so that a server spawned once via the form can be re-spawned via the API
with the same options.

	Added c.PAMAuthenticator.pam_normalize_username option for round-tripping
usernames through PAM to retrieve the normalized form.

	Added c.JupyterHub.named_server_limit_per_user configuration to limit
the number of named servers each user can have.
The default is 0, for no limit.

	API requests to HubAuthenticated services (e.g. single-user servers)
may pass a token in the Authorization header,
matching authentication with the Hub API itself.

	Added Authenticator.is_admin(handler, authentication) method
and Authenticator.admin_groups configuration for automatically
determining that a member of a group should be considered an admin.

	New c.Authenticator.post_auth_hook configuration
that can be any callable of the form async def hook(authenticator, handler, authentication=None):.
This hook may transform the return value of Authenticator.authenticate()
and return a new authentication dictionary,
e.g. specifying admin privileges, group membership,
or custom allowed/blocked logic.
This hook is called after existing normalization and allowed-username checking.

	Spawner.options_from_form may now be async

	Added JupyterHub.shutdown_on_logout option to trigger shutdown of a user’s
servers when they log out.

	When Spawner.start raises an Exception,
a message can be passed on to the user if the exception has a .jupyterhub_message attribute.

Changes

	Authentication methods such as check_whitelist should now take an additional
authentication argument
that will be a dictionary (default: None) of authentication data,
as returned by Authenticator.authenticate():

def check_whitelist(self, username, authentication=None):
 ...

authentication should have a default value of None
for backward-compatibility with jupyterhub < 1.0.

	Prometheus metrics page is now authenticated.
Any authenticated user may see the prometheus metrics.
To disable prometheus authentication,
set JupyterHub.authenticate_prometheus = False.

	Visits to /user/:name no longer trigger an implicit launch of the user’s server.
Instead, a page is shown indicating that the server is not running
with a link to request the spawn.

	API requests to /user/:name for a not-running server will have status 503 instead of 404.

	OAuth includes a confirmation page when attempting to visit another user’s server,
so that users can choose to cancel authentication with the single-user server.
Confirmation is still skipped when accessing your own server.

Fixed

	Various fixes to improve Windows compatibility
(default Authenticator and Spawner still do not support Windows, but other Spawners may)

	Fixed compatibility with Oracle db

	Fewer redirects following a visit to the default / url

	Error when progress is requested before progress is ready

	Error when API requests are made to a not-running server without authentication

	Avoid logging database password on connect if password is specified in JupyterHub.db_url.

Development changes

There have been several changes to the development process that shouldn’t
generally affect users of JupyterHub, but may affect contributors.
In general, see CONTRIBUTING.md for contribution info or ask if you have questions.

	JupyterHub has adopted black as a code autoformatter and pre-commit
as a tool for automatically running code formatting on commit.
This is meant to make it easier to contribute to JupyterHub,
so let us know if it’s having the opposite effect.

	JupyterHub has switched its test suite to using pytest-asyncio from pytest-tornado.

	OAuth is now implemented internally using oauthlib instead of python-oauth2. This should have no effect on behavior.

0.9

0.9.6 [https://github.com/jupyterhub/jupyterhub/compare/0.9.4...0.9.6] 2019-04-01

JupyterHub 0.9.6 is a security release.

	Fixes an Open Redirect vulnerability (CVE-2019-10255).

JupyterHub 0.9.5 included a partial fix for this issue.

0.9.4 [https://github.com/jupyterhub/jupyterhub/compare/0.9.3...0.9.4] 2018-09-24

JupyterHub 0.9.4 is a small bugfix release.

	Fixes an issue that required all running user servers to be restarted
when performing an upgrade from 0.8 to 0.9.

	Fixes content-type for API endpoints back to application/json.
It was text/html in 0.9.0-0.9.3.

0.9.3 [https://github.com/jupyterhub/jupyterhub/compare/0.9.2...0.9.3] 2018-09-12

JupyterHub 0.9.3 contains small bugfixes and improvements

	Fix token page and model handling of expires_at.
This field was missing from the REST API model for tokens
and could cause the token page to not render

	Add keep-alive to progress event stream to avoid proxies dropping
the connection due to inactivity

	Documentation and example improvements

	Disable quit button when using notebook 5.6

	Prototype new feature (may change prior to 1.0):
pass requesting Handler to Spawners during start,
accessible as self.handler

0.9.2 [https://github.com/jupyterhub/jupyterhub/compare/0.9.1...0.9.2] 2018-08-10

JupyterHub 0.9.2 contains small bugfixes and improvements.

	Documentation and example improvements

	Add Spawner.consecutive_failure_limit config for aborting the Hub if too many spawns fail in a row.

	Fix for handling SIGTERM when run with asyncio (tornado 5)

	Windows compatibility fixes

0.9.1 [https://github.com/jupyterhub/jupyterhub/compare/0.9.0...0.9.1] 2018-07-04

JupyterHub 0.9.1 contains a number of small bugfixes on top of 0.9.

	Use a PID file for the proxy to decrease the likelihood that a leftover proxy process will prevent JupyterHub from restarting

	c.LocalProcessSpawner.shell_cmd is now configurable

	API requests to stopped servers (requests to the hub for /user/:name/api/...) fail with 404 rather than triggering a restart of the server

	Compatibility fix for notebook 5.6.0 which will introduce further
security checks for local connections

	Managed services always use localhost to talk to the Hub if the Hub listening on all interfaces

	When using a URL prefix, the Hub route will be JupyterHub.base_url instead of unconditionally /

	additional fixes and improvements

0.9.0 [https://github.com/jupyterhub/jupyterhub/compare/0.8.1...0.9.0] 2018-06-15

JupyterHub 0.9 is a major upgrade of JupyterHub.
There are several changes to the database schema,
so make sure to backup your database and run:

jupyterhub upgrade-db

after upgrading jupyterhub.

The biggest change for 0.9 is the switch to asyncio coroutines everywhere
instead of tornado coroutines. Custom Spawners and Authenticators are still
free to use tornado coroutines for async methods, as they will continue to
work. As part of this upgrade, JupyterHub 0.9 drops support for Python < 3.5
and tornado < 5.0.

Changed

	Require Python >= 3.5

	Require tornado >= 5.0

	Use asyncio coroutines throughout

	Set status 409 for conflicting actions instead of 400,
e.g. creating users or groups that already exist.

	timestamps in REST API continue to be UTC, but now include ‘Z’ suffix
to identify them as such.

	REST API User model always includes servers dict,
not just when named servers are enabled.

	server info is no longer available to oauth identification endpoints,
only user info and group membership.

	User.last_activity may be None if a user has not been seen,
rather than starting with the user creation time
which is now separately stored as User.created.

	static resources are now found in $PREFIX/share/jupyterhub instead of share/jupyter/hub for improved consistency.

	Deprecate .extra_log_file config. Use pipe redirection instead:

jupyterhub &>> /var/log/jupyterhub.log

	Add JupyterHub.bind_url config for setting the full bind URL of the proxy.
Sets ip, port, base_url all at once.

	Add JupyterHub.hub_bind_url for setting the full host+port of the Hub.
hub_bind_url supports unix domain sockets, e.g.
unix+http://%2Fsrv%2Fjupyterhub.sock

	Deprecate JupyterHub.hub_connect_port config in favor of JupyterHub.hub_connect_url. hub_connect_ip is not deprecated
and can still be used in the common case where only the ip address of the hub differs from the bind ip.

Added

	Spawners can define a .progress method which should be an async generator.
The generator should yield events of the form:

{
 "message": "some-state-message",
 "progress": 50,
}

These messages will be shown with a progress bar on the spawn-pending page.
The async_generator package can be used to make async generators
compatible with Python 3.5.

	track activity of individual API tokens

	new REST API for managing API tokens at /hub/api/user/tokens[/token-id]

	allow viewing/revoking tokens via token page

	User creation time is available in the REST API as User.created

	Server start time is stored as Server.started

	Spawner.start may return a URL for connecting to a notebook instead of (ip, port). This enables Spawners to launch servers that setup their own HTTPS.

	Optimize database performance by disabling sqlalchemy expire_on_commit by default.

	Add python -m jupyterhub.dbutil shell entrypoint for quickly
launching an IPython session connected to your JupyterHub database.

	Include User.auth_state in user model on single-user REST endpoints for admins only.

	Include Server.state in server model on REST endpoints for admins only.

	Add Authenticator.blacklist for blocking users instead of allowing.

	Pass c.JupyterHub.tornado_settings['cookie_options'] down to Spawners
so that cookie options (e.g. expires_days) can be set globally for the whole application.

	SIGINFO (ctrl-t) handler showing the current status of all running threads,
coroutines, and CPU/memory/FD consumption.

	Add async Spawner.get_options_form alternative to .options_form, so it can be a coroutine.

	Add JupyterHub.redirect_to_server config to govern whether
users should be sent to their server on login or the JupyterHub home page.

	html page templates can be more easily customized and extended.

	Allow registering external OAuth clients for using the Hub as an OAuth provider.

	Add basic prometheus metrics at /hub/metrics endpoint.

	Add session-id cookie, enabling immediate revocation of login tokens.

	Authenticators may specify that users are admins by specifying the admin key when return the user model as a dict.

	Added “Start All” button to admin page for launching all user servers at once.

	Services have an info field which is a dictionary.
This is accessible via the REST API.

	JupyterHub.extra_handlers allows defining additional tornado RequestHandlers attached to the Hub.

	API tokens may now expire.
Expiry is available in the REST model as expires_at,
and settable when creating API tokens by specifying expires_in.

Fixed

	Remove green from theme to improve accessibility

	Fix error when proxy deletion fails due to route already being deleted

	clear ?redirects from URL on successful launch

	disable send2trash by default, which is rarely desirable for jupyterhub

	Put PAM calls in a thread so they don’t block the main application
in cases where PAM is slow (e.g. LDAP).

	Remove implicit spawn from login handler,
instead relying on subsequent request for /user/:name to trigger spawn.

	Fixed several inconsistencies for initial redirects,
depending on whether server is running or not and whether the user is logged in or not.

	Admin requests for /user/:name (when admin-access is enabled) launch the right server if it’s not running instead of redirecting to their own.

	Major performance improvement starting up JupyterHub with many users,
especially when most are inactive.

	Various fixes in race conditions and performance improvements with the default proxy.

	Fixes for CORS headers

	Stop setting .form-control on spawner form inputs unconditionally.

	Better recovery from database errors and database connection issues
without having to restart the Hub.

	Fix handling of ~ character in usernames.

	Fix jupyterhub startup when getpass.getuser() would fail,
e.g. due to missing entry in passwd file in containers.

0.8

0.8.1 [https://github.com/jupyterhub/jupyterhub/compare/0.8.0...0.8.1] 2017-11-07

JupyterHub 0.8.1 is a collection of bugfixes and small improvements on 0.8.

Added

	Run tornado with AsyncIO by default

	Add jupyterhub --upgrade-db flag for automatically upgrading the database as part of startup.
This is useful for cases where manually running jupyterhub upgrade-db
as a separate step is unwieldy.

	Avoid creating backups of the database when no changes are to be made by
jupyterhub upgrade-db.

Fixed

	Add some further validation to usernames - / is not allowed in usernames.

	Fix empty logout page when using auto_login

	Fix autofill of username field in default login form.

	Fix listing of users on the admin page who have not yet started their server.

	Fix ever-growing traceback when re-raising Exceptions from spawn failures.

	Remove use of deprecated bower for javascript client dependencies.

0.8.0 [https://github.com/jupyterhub/jupyterhub/compare/0.7.2...0.8.0] 2017-10-03

JupyterHub 0.8 is a big release!

Perhaps the biggest change is the use of OAuth to negotiate authentication
between the Hub and single-user services.
Due to this change, it is important that the single-user server
and Hub are both running the same version of JupyterHub.
If you are using containers (e.g. via DockerSpawner or KubeSpawner),
this means upgrading jupyterhub in your user images at the same time as the Hub.
In most cases, a

pip install jupyterhub==version

in your Dockerfile is sufficient.

Added

	JupyterHub now defined a Proxy API for custom
proxy implementations other than the default.
The defaults are unchanged,
but configuration of the proxy is now done on the ConfigurableHTTPProxy class instead of the top-level JupyterHub.
TODO: docs for writing a custom proxy.

	Single-user servers and services
(anything that uses HubAuth)
can now accept token-authenticated requests via the Authentication header.

	Authenticators can now store state in the Hub’s database.
To do so, the authenticate method should return a dict of the form

{
 'username': 'name',
 'state': {}
}

This data will be encrypted and requires JUPYTERHUB_CRYPT_KEY environment variable to be set
and the Authenticator.enable_auth_state flag to be True.
If these are not set, auth_state returned by the Authenticator will not be stored.

	There is preliminary support for multiple (named) servers per user in the REST API.
Named servers can be created via API requests, but there is currently no UI for managing them.

	Add LocalProcessSpawner.popen_kwargs and LocalProcessSpawner.shell_cmd
for customizing how user server processes are launched.

	Add Authenticator.auto_login flag for skipping the “Login with…” page explicitly.

	Add JupyterHub.hub_connect_ip configuration
for the ip that should be used when connecting to the Hub.
This is promoting (and deprecating) DockerSpawner.hub_ip_connect
for use by all Spawners.

	Add Spawner.pre_spawn_hook(spawner) hook for customizing
pre-spawn events.

	Add JupyterHub.active_server_limit and JupyterHub.concurrent_spawn_limit
for limiting the total number of running user servers and the number of pending spawns, respectively.

Changed

	more arguments to spawners are now passed via environment variables (.get_env())
rather than CLI arguments (.get_args())

	internally generated tokens no longer get extra hash rounds,
significantly speeding up authentication.
The hash rounds were deemed unnecessary because the tokens were already
generated with high entropy.

	JUPYTERHUB_API_TOKEN env is available at all times,
rather than being removed during single-user start.
The token is now accessible to kernel processes,
enabling user kernels to make authenticated API requests to Hub-authenticated services.

	Cookie secrets should be 32B hex instead of large base64 secrets.

	pycurl is used by default, if available.

Fixed

So many things fixed!

	Collisions are checked when users are renamed

	Fix bug where OAuth authenticators could not logout users
due to being redirected right back through the login process.

	If there are errors loading your config files,
JupyterHub will refuse to start with an informative error.
Previously, the bad config would be ignored and JupyterHub would launch with default configuration.

	Raise 403 error on unauthorized user rather than redirect to login,
which could cause redirect loop.

	Set httponly on cookies because it’s prudent.

	Improve support for MySQL as the database backend

	Many race conditions and performance problems under heavy load have been fixed.

	Fix alembic tagging of database schema versions.

Removed

	End support for Python 3.3

0.7

0.7.2 [https://github.com/jupyterhub/jupyterhub/compare/0.7.1...0.7.2] - 2017-01-09

Added

	Support service environment variables and defaults in jupyterhub-singleuser
for easier deployment of notebook servers as a Service.

	Add --group parameter for deploying jupyterhub-singleuser as a Service with group authentication.

	Include URL parameters when redirecting through /user-redirect/

Fixed

	Fix group authentication for HubAuthenticated services

0.7.1 [https://github.com/jupyterhub/jupyterhub/compare/0.7.0...0.7.1] - 2017-01-02

Added

	Spawner.will_resume for signaling that a single-user server is paused instead of stopped.
This is needed for cases like DockerSpawner.remove_containers = False,
where the first API token is re-used for subsequent spawns.

	Warning on startup about single-character usernames,
caused by common set('string') typo in config.

Fixed

	Removed spurious warning about empty next_url, which is AOK.

0.7.0 [https://github.com/jupyterhub/jupyterhub/compare/0.6.1...0.7.0] - 2016-12-2

Added

	Implement Services API #705 [https://github.com/jupyterhub/jupyterhub/pull/705]

	Add /api/ and /api/info endpoints #675 [https://github.com/jupyterhub/jupyterhub/pull/675]

	Add documentation for JupyterLab, pySpark configuration, troubleshooting,
and more.

	Add logging of error if adding users already in database. #689 [https://github.com/jupyterhub/jupyterhub/pull/689]

	Add HubAuth class for authenticating with JupyterHub. This class can
be used by any application, even outside tornado.

	Add user groups.

	Add /hub/user-redirect/... URL for redirecting users to a file on their own server.

Changed

	Always install with setuptools but not eggs (effectively require
pip install .) #722 [https://github.com/jupyterhub/jupyterhub/pull/722]

	Updated formatting of changelog. #711 [https://github.com/jupyterhub/jupyterhub/pull/711]

	Single-user server is provided by JupyterHub package, so single-user servers depend on JupyterHub now.

Fixed

	Fix docker repository location #719 [https://github.com/jupyterhub/jupyterhub/pull/719]

	Fix swagger spec conformance and timestamp type in API spec

	Various redirect-loop-causing bugs have been fixed.

Removed

	Deprecate --no-ssl command line option. It has no meaning and warns if
used. #789 [https://github.com/jupyterhub/jupyterhub/pull/789]

	Deprecate %U username substitution in favor of {username}. #748 [https://github.com/jupyterhub/jupyterhub/pull/748]

	Removed deprecated SwarmSpawner link. #699 [https://github.com/jupyterhub/jupyterhub/pull/699]

0.6

0.6.1 [https://github.com/jupyterhub/jupyterhub/compare/0.6.0...0.6.1] - 2016-05-04

Bugfixes on 0.6:

	statsd is an optional dependency, only needed if in use

	Notice more quickly when servers have crashed

	Better error pages for proxy errors

	Add Stop All button to admin panel for stopping all servers at once

0.6.0 [https://github.com/jupyterhub/jupyterhub/compare/0.5.0...0.6.0] - 2016-04-25

	JupyterHub has moved to a new jupyterhub namespace on GitHub and Docker. What was jupyter/jupyterhub is now jupyterhub/jupyterhub, etc.

	jupyterhub/jupyterhub image on DockerHub no longer loads the jupyterhub_config.py in an ONBUILD step. A new jupyterhub/jupyterhub-onbuild image does this

	Add statsd support, via c.JupyterHub.statsd_{host,port,prefix}

	Update to traitlets 4.1 @default, @observe APIs for traits

	Allow disabling PAM sessions via c.PAMAuthenticator.open_sessions = False. This may be needed on SELinux-enabled systems, where our PAM session logic often does not work properly

	Add Spawner.environment configurable, for defining extra environment variables to load for single-user servers

	JupyterHub API tokens can be pregenerated and loaded via JupyterHub.api_tokens, a dict of token: username.

	JupyterHub API tokens can be requested via the REST API, with a POST request to /api/authorizations/token.
This can only be used if the Authenticator has a username and password.

	Various fixes for user URLs and redirects

0.5 [https://github.com/jupyterhub/jupyterhub/compare/0.4.1...0.5.0] - 2016-03-07

	Single-user server must be run with Jupyter Notebook ≥ 4.0

	Require --no-ssl confirmation to allow the Hub to be run without SSL (e.g. behind SSL termination in nginx)

	Add lengths to text fields for MySQL support

	Add Spawner.disable_user_config for preventing user-owned configuration from modifying single-user servers.

	Fixes for MySQL support.

	Add ability to run each user’s server on its own subdomain. Requires wildcard DNS and wildcard SSL to be feasible. Enable subdomains by setting JupyterHub.subdomain_host = 'https://jupyterhub.domain.tld[:port]'.

	Use 127.0.0.1 for local communication instead of localhost, avoiding issues with DNS on some systems.

	Fix race that could add users to proxy prematurely if spawning is slow.

0.4

0.4.1 [https://github.com/jupyterhub/jupyterhub/compare/0.4.0...0.4.1] - 2016-02-03

Fix removal of /login page in 0.4.0, breaking some OAuth providers.

0.4.0 [https://github.com/jupyterhub/jupyterhub/compare/0.3.0...0.4.0] - 2016-02-01

	Add Spawner.user_options_form for specifying an HTML form to present to users,
allowing users to influence the spawning of their own servers.

	Add Authenticator.pre_spawn_start and Authenticator.post_spawn_stop hooks,
so that Authenticators can do setup or teardown (e.g. passing credentials to Spawner,
mounting data sources, etc.).
These methods are typically used with custom Authenticator+Spawner pairs.

	0.4 will be the last JupyterHub release where single-user servers running IPython 3 is supported instead of Notebook ≥ 4.0.

0.3 [https://github.com/jupyterhub/jupyterhub/compare/0.2.0...0.3.0] - 2015-11-04

	No longer make the user starting the Hub an admin

	start PAM sessions on login

	hooks for Authenticators to fire before spawners start and after they stop,
allowing deeper interaction between Spawner/Authenticator pairs.

	login redirect fixes

0.2 [https://github.com/jupyterhub/jupyterhub/compare/0.1.0...0.2.0] - 2015-07-12

	Based on standalone traitlets instead of IPython.utils.traitlets

	multiple users in admin panel

	Fixes for usernames that require escaping

0.1 - 2015-03-07

First preview release

 A Gallery of JupyterHub Deployments

A Gallery of JupyterHub Deployments

A JupyterHub Community Resource

We’ve compiled this list of JupyterHub deployments to help the community
see the breadth and growth of JupyterHub’s use in education, research, and
high performance computing.

Please submit pull requests to update information or to add new institutions or uses.

Academic Institutions, Research Labs, and Supercomputer Centers

University of California Berkeley

	BIDS - Berkeley Institute for Data Science [https://bids.berkeley.edu/]

	Teaching with Jupyter notebooks and JupyterHub [https://bids.berkeley.edu/resources/videos/teaching-ipythonjupyter-notebooks-and-jupyterhub]

	Data 8 [http://data8.org/]

	GitHub organization [https://github.com/data-8]

	NERSC [http://www.nersc.gov/]

	Press release on Jupyter and Cori [http://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2016/jupyter-notebooks-will-open-up-new-possibilities-on-nerscs-cori-supercomputer/]

	Moving and sharing data [https://www.nersc.gov/assets/Uploads/03-MovingAndSharingData-Cholia.pdf]

	Research IT [http://research-it.berkeley.edu]

	JupyterHub server supports campus research computation [http://research-it.berkeley.edu/blog/17/01/24/free-fully-loaded-jupyterhub-server-supports-campus-research-computation]

University of California Davis

	Spinning up multiple Jupyter Notebooks on AWS for a tutorial [https://github.com/mblmicdiv/course2017/blob/HEAD/exercises/sourmash-setup.md]

Although not technically a JupyterHub deployment, this tutorial setup
may be helpful to others in the Jupyter community.

Thank you C. Titus Brown for sharing this with the Software Carpentry
mailing list.

* I started a big Amazon machine;
* I installed Docker and built a custom image containing my software of
 interest;
* I ran multiple containers, one connected to port 8000, one on 8001,
 etc. and gave each student a different port;
* students could connect in and use the Terminal program in Jupyter to
 execute commands, and could upload/download files via the Jupyter
 console interface;
* in theory I could have used notebooks too, but for this I didn’t have
 need.

I am aware that JupyterHub can probably do all of this including manage
the containers, but I’m still a bit shy of diving into that; this was
fairly straightforward, gave me disposable containers that were isolated
for each individual student, and worked almost flawlessly. Should be
easy to do with RStudio too.

Cal Poly San Luis Obispo

	jupyterhub-deploy-teaching [https://github.com/jupyterhub/jupyterhub-deploy-teaching] based on work by Brian Granger for Cal Poly’s Data Science 301 Course

Chameleon

Chameleon [https://www.chameleoncloud.org] is a NSF-funded configurable experimental environment for large-scale computer science systems research with bare metal reconfigurability [https://chameleoncloud.readthedocs.io/en/latest/technical/baremetal.html]. Chameleon users utilize JupyterHub to document and reproduce their complex CISE and networking experiments.

	Shared JupyterHub [https://jupyter.chameleoncloud.org]: provides a common “workbench” environment for any Chameleon user.

	Trovi [https://www.chameleoncloud.org/experiment/share]: a sharing portal of experiments, tutorials, and examples, which users can launch as a dedicated isolated environments on Chameleon’s JupyterHub.

Clemson University

	Advanced Computing

	Palmetto cluster and JupyterHub [http://citi.sites.clemson.edu/2016/08/18/JupyterHub-for-Palmetto-Cluster.html]

University of Colorado Boulder

	(CU Research Computing) CURC

	JupyterHub User Guide [https://www.rc.colorado.edu/support/user-guide/jupyterhub.html]

	Slurm job dispatched on Crestone compute cluster

	log troubleshooting

	Profiles in IPython Clusters tab

	Parallel Processing with JupyterHub tutorial [https://www.rc.colorado.edu/support/examples-and-tutorials/parallel-processing-with-jupyterhub.html]

	Parallel Programming with JupyterHub document [https://www.rc.colorado.edu/book/export/html/833]

	Earth Lab at CU

	Tutorial on Parallel R on JupyterHub [https://earthdatascience.org/tutorials/parallel-r-on-jupyterhub/]

George Washington University

	Jupyter Hub [http://go.gwu.edu/jupyter] with university single-sign-on. Deployed early 2017.

HTCondor

	HTCondor Python Bindings Tutorial from HTCondor Week 2017 includes information on their JupyterHub tutorials [https://research.cs.wisc.edu/htcondor/HTCondorWeek2017/presentations/TueBockelman_Python.pdf]

University of Illinois

	https://datascience.business.illinois.edu (currently down; checked 04/26/19)

IllustrisTNG Simulation Project

	JupyterHub/Lab-based analysis platform, part of the TNG public data release [http://www.tng-project.org/data/]

MIT and Lincoln Labs

	https://supercloud.mit.edu/

Michigan State University

	Setting up JupyterHub [https://mediaspace.msu.edu/media/Setting+Up+Your+JupyterHub+Password/1_hgv13aag/11980471]

University of Minnesota

	JupyterHub Inside HPC [https://insidehpc.com/tag/jupyterhub/]

University of Missouri

	https://dsa.missouri.edu/faq/

Paderborn University

	Data Science (DICE) group [https://dice.cs.uni-paderborn.de/]

	nbgraderutils [https://github.com/dice-group/nbgraderutils]: Use JupyterHub + nbgrader + iJava kernel for online Java exercises. Used in lecture Statistical Natural Language Processing.

Penn State University

	Press release [https://news.psu.edu/story/523093/2018/05/24/new-open-source-web-apps-available-students-and-faculty]: “New open-source web apps available for students and faculty” (but Hub is currently down; checked 04/26/19)

University of Rochester CIRC

	JupyterHub Userguide [https://info.circ.rochester.edu/Web_Applications/JupyterHub.html] - Slurm, beehive

University of California San Diego

	San Diego Supercomputer Center - Andrea Zonca

	Deploy JupyterHub on a Supercomputer with SSH [https://zonca.github.io/2017/05/jupyterhub-hpc-batchspawner-ssh.html]

	Run Jupyterhub on a Supercomputer [https://zonca.github.io/2015/04/jupyterhub-hpc.html]

	Deploy JupyterHub on a VM for a Workshop [https://zonca.github.io/2016/04/jupyterhub-sdsc-cloud.html]

	Customize your Python environment in Jupyterhub [https://zonca.github.io/2017/02/customize-python-environment-jupyterhub.html]

	Jupyterhub deployment on multiple nodes with Docker Swarm [https://zonca.github.io/2016/05/jupyterhub-docker-swarm.html]

	Sample deployment of Jupyterhub in HPC on SDSC Comet [https://zonca.github.io/2017/02/sample-deployment-jupyterhub-hpc.html]

	Educational Technology Services - Paul Jamason

	jupyterhub.ucsd.edu [https://jupyterhub.ucsd.edu]

TACC University of Texas

Texas A&M

	Kristen Thyng - Oceanography

	Teaching with JupyterHub and nbgrader [http://kristenthyng.com/blog/2016/09/07/jupyterhub+nbgrader/]

Elucidata

	What’s new in Jupyter Notebooks @Elucidata [https://elucidata.io/]:

	Using Jupyter Notebooks with Jupyterhub on GCP, managed by GKE - https://medium.com/elucidata/why-you-should-be-using-a-jupyter-notebook-8385a4ccd93d

Service Providers

AWS

	running-jupyter-notebook-and-jupyterhub-on-amazon-emr [https://aws.amazon.com/blogs/big-data/running-jupyter-notebook-and-jupyterhub-on-amazon-emr/]

Google Cloud Platform

	Using Tensorflow and JupyterHub in Classrooms [https://cloud.google.com/solutions/using-tensorflow-jupyterhub-classrooms]

	using-tensorflow-and-jupyterhub blog post [https://opensource.googleblog.com/2016/10/using-tensorflow-and-jupyterhub.html]

Everware

Everware [https://github.com/everware] Reproducible and reusable science powered by jupyterhub and docker. Like nbviewer, but executable. CERN, Geneva website [http://everware.xyz/]

Microsoft Azure

	https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-data-science-linux-dsvm-intro

Rackspace Carina

	https://getcarina.com/blog/learning-how-to-whale/

	http://carolynvanslyck.com/talk/carina/jupyterhub/#/

Hadoop

	Deploying JupyterHub on Hadoop [https://jupyterhub-on-hadoop.readthedocs.io]

Miscellaneous

	https://medium.com/@ybarraud/setting-up-jupyterhub-with-sudospawner-and-anaconda-844628c0dbee#.rm3yt87e1

	https://groups.google.com/forum/#!topic/jupyter/nkPSEeMr8c0 Mailing list UT deployment

	JupyterHub setup on Centos https://gist.github.com/johnrc/604971f7d41ebf12370bf5729bf3e0a4

	Deploy JupyterHub to Docker Swarm https://jupyterhub.surge.sh/#/welcome

	http://www.laketide.com/building-your-lab-part-3/

	http://estrellita.hatenablog.com/entry/2015/07/31/083202

	http://www.walkingrandomly.com/?p=5734

	https://wrdrd.com/docs/consulting/education-technology

	https://bitbucket.org/jackhale/fenics-jupyter

	LinuxCluster blog [https://linuxcluster.wordpress.com/category/application/jupyterhub/]

	Network Technology [https://arnesund.com/tag/jupyterhub/] Spark Cluster on OpenStack with Multi-User Jupyter Notebook [https://arnesund.com/2015/09/21/spark-cluster-on-openstack-with-multi-user-jupyter-notebook/]

 Python Module Index

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jupyterhub	

 	
 	
 jupyterhub.app	

 	
 	
 jupyterhub.auth	

 	
 	
 jupyterhub.proxy	

 	
 	
 jupyterhub.services.auth	

 	
 	
 jupyterhub.services.service	

 	
 	
 jupyterhub.spawner	

 	
 	
 jupyterhub.user	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	active_server_limit (jupyterhub.app.JupyterHub attribute)

 	active_user_window (jupyterhub.app.JupyterHub attribute)

 	activity_resolution (jupyterhub.app.JupyterHub attribute)

 	add() (jupyterhub.user.UserDict method)

 	add_all_services() (jupyterhub.proxy.Proxy method)

 	add_all_users() (jupyterhub.proxy.Proxy method)

 	add_hub_route() (jupyterhub.proxy.Proxy method)

 	add_route() (jupyterhub.proxy.Proxy method)

 	add_service() (jupyterhub.proxy.Proxy method)

 	add_system_user() (jupyterhub.auth.LocalAuthenticator method)

 	add_user() (jupyterhub.auth.Authenticator method)

 	(jupyterhub.auth.LocalAuthenticator method)

 	(jupyterhub.proxy.Proxy method)

 	add_user_cmd (jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	admin_access (jupyterhub.app.JupyterHub attribute)

 	admin_groups (jupyterhub.auth.PAMAuthenticator attribute)

 	admin_users (jupyterhub.app.JupyterHub attribute)

 	(jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	allow_all (jupyterhub.services.auth.HubAuthenticated property)

 	allow_named_servers (jupyterhub.app.JupyterHub attribute)

 	allowed_groups (jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	allowed_users (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	
 	answer_yes (jupyterhub.app.JupyterHub attribute)

 	api_page_default_limit (jupyterhub.app.JupyterHub attribute)

 	api_page_max_limit (jupyterhub.app.JupyterHub attribute)

 	api_token (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	api_tokens (jupyterhub.app.JupyterHub attribute)

 	api_url (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	(jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	args (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	auth_refresh_age (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	auth_state_hook (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	auth_token (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	authenticate() (jupyterhub.auth.Authenticator method)

 	authenticate_prometheus (jupyterhub.app.JupyterHub attribute)

 	Authenticator (class in jupyterhub.auth)

 	authenticator_class (jupyterhub.app.JupyterHub attribute)

 	auto_login (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	auto_login_oauth2_authorize (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

B

 	
 	base_url (jupyterhub.app.JupyterHub attribute)

 	(jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	bind_url (jupyterhub.app.JupyterHub attribute)

 	
 	blocked_users (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

C

 	
 	cache_max_age (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	certfile (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	check_account (jupyterhub.auth.PAMAuthenticator attribute)

 	check_allowed() (jupyterhub.auth.Authenticator method)

 	(jupyterhub.auth.LocalAuthenticator method)

 	check_allowed_groups() (jupyterhub.auth.LocalAuthenticator method)

 	check_blocked_users() (jupyterhub.auth.Authenticator method)

 	check_hub_user() (jupyterhub.services.auth.HubAuthenticated method)

 	check_routes() (jupyterhub.proxy.Proxy method)

 	check_running_interval (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	check_scopes() (jupyterhub.services.auth.HubAuth method)

 	cleanup_proxy (jupyterhub.app.JupyterHub attribute)

 	cleanup_servers (jupyterhub.app.JupyterHub attribute)

 	clear_cookie() (jupyterhub.services.auth.HubOAuth method)

 	client_ca (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	cmd (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	command (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	
 	concurrency (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	concurrent_spawn_limit (jupyterhub.app.JupyterHub attribute)

 	config_file (jupyterhub.app.JupyterHub attribute)

 	ConfigurableHTTPProxy (class in jupyterhub.proxy)

 	confirm_no_ssl (jupyterhub.app.JupyterHub attribute)

 	consecutive_failure_limit (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	cookie_max_age_days (jupyterhub.app.JupyterHub attribute)

 	cookie_name (jupyterhub.services.auth.HubOAuth property)

 	cookie_options (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	cookie_secret (jupyterhub.app.JupyterHub attribute)

 	cookie_secret_file (jupyterhub.app.JupyterHub attribute)

 	count_active_users() (jupyterhub.user.UserDict method)

 	cpu_guarantee (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	cpu_limit (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	create_certs() (jupyterhub.spawner.Spawner method)

 	create_system_users (jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

D

 	
 	data_files_path (jupyterhub.app.JupyterHub attribute)

 	db_kwargs (jupyterhub.app.JupyterHub attribute)

 	db_url (jupyterhub.app.JupyterHub attribute)

 	debug (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	(jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	debug_db (jupyterhub.app.JupyterHub attribute)

 	debug_proxy (jupyterhub.app.JupyterHub attribute)

 	default_server_name (jupyterhub.app.JupyterHub attribute)

 	default_url (jupyterhub.app.JupyterHub attribute)

 	(jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	
 	delete() (jupyterhub.user.UserDict method)

 	delete_invalid_users (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	delete_route() (jupyterhub.proxy.Proxy method)

 	delete_service() (jupyterhub.proxy.Proxy method)

 	delete_user() (jupyterhub.auth.Authenticator method)

 	(jupyterhub.proxy.Proxy method)

 	disable_user_config (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	DummyAuthenticator (class in jupyterhub.auth)

E

 	
 	enable_auth_state (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	encoding (jupyterhub.auth.PAMAuthenticator attribute)

 	env_keep (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	environment (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	
 	escaped_name (jupyterhub.user.User property)

 	external_ssl_authorities (jupyterhub.app.JupyterHub attribute)

 	extra_handlers (jupyterhub.app.JupyterHub attribute)

 	extra_log_file (jupyterhub.app.JupyterHub attribute)

 	extra_log_handlers (jupyterhub.app.JupyterHub attribute)

 	extra_routes (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	(jupyterhub.proxy.Proxy attribute)

F

 	
 	format_string() (jupyterhub.spawner.Spawner method)

G

 	
 	generate_certs (jupyterhub.app.JupyterHub attribute)

 	generate_config (jupyterhub.app.JupyterHub attribute)

 	generate_state() (jupyterhub.services.auth.HubOAuth method)

 	get() (jupyterhub.user.UserDict method)

 	get_all_routes() (jupyterhub.proxy.Proxy method)

 	get_args() (jupyterhub.spawner.Spawner method)

 	get_authenticated_user() (jupyterhub.auth.Authenticator method)

 	get_current_user() (jupyterhub.services.auth.HubAuthenticated method)

 	get_custom_html() (jupyterhub.auth.Authenticator method)

 	get_env() (jupyterhub.spawner.Spawner method)

 	
 	get_handlers() (jupyterhub.auth.Authenticator method)

 	get_login_url() (jupyterhub.services.auth.HubAuthenticated method)

 	get_next_url() (jupyterhub.services.auth.HubOAuth method)

 	get_route() (jupyterhub.proxy.Proxy method)

 	get_session_id() (jupyterhub.services.auth.HubAuth method)

 	get_state() (jupyterhub.spawner.Spawner method)

 	get_state_cookie_name() (jupyterhub.services.auth.HubOAuth method)

 	get_token() (jupyterhub.services.auth.HubAuth method)

 	get_user() (jupyterhub.services.auth.HubAuth method)

 	group_whitelist (jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

H

 	
 	http_timeout (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	hub_auth_class (jupyterhub.services.auth.HubAuthenticated attribute)

 	hub_bind_url (jupyterhub.app.JupyterHub attribute)

 	hub_connect_ip (jupyterhub.app.JupyterHub attribute)

 	hub_connect_port (jupyterhub.app.JupyterHub attribute)

 	hub_connect_url (jupyterhub.app.JupyterHub attribute)

 	(jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	hub_host (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	
 	hub_ip (jupyterhub.app.JupyterHub attribute)

 	hub_port (jupyterhub.app.JupyterHub attribute)

 	hub_prefix (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	hub_routespec (jupyterhub.app.JupyterHub attribute)

 	hub_scopes (jupyterhub.services.auth.HubAuthenticated property)

 	HubAuth (class in jupyterhub.services.auth)

 	HubAuthenticated (class in jupyterhub.services.auth)

 	HubOAuth (class in jupyterhub.services.auth)

 	HubOAuthCallbackHandler (class in jupyterhub.services.auth)

 	HubOAuthenticated (class in jupyterhub.services.auth)

I

 	
 	implicit_spawn_seconds (jupyterhub.app.JupyterHub attribute)

 	init_spawners_timeout (jupyterhub.app.JupyterHub attribute)

 	internal_certs_location (jupyterhub.app.JupyterHub attribute)

 	internal_ssl (jupyterhub.app.JupyterHub attribute)

 	
 	interrupt_timeout (jupyterhub.spawner.LocalProcessSpawner attribute)

 	ip (jupyterhub.app.JupyterHub attribute)

 	(jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	is_admin() (jupyterhub.auth.Authenticator method)

J

 	
 	jinja_environment_options (jupyterhub.app.JupyterHub attribute)

 	JupyterHub (class in jupyterhub.app)

 	
 jupyterhub.app

 	module

 	
 jupyterhub.auth

 	module

 	
 jupyterhub.proxy

 	module

 	
 	
 jupyterhub.services.auth

 	module

 	
 jupyterhub.services.service

 	module

 	
 jupyterhub.spawner

 	module

 	
 jupyterhub.user

 	module

K

 	
 	keyfile (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	
 	kill_timeout (jupyterhub.spawner.LocalProcessSpawner attribute)

 	kind (jupyterhub.services.service.Service property)

L

 	
 	last_activity_interval (jupyterhub.app.JupyterHub attribute)

 	load_groups (jupyterhub.app.JupyterHub attribute)

 	load_roles (jupyterhub.app.JupyterHub attribute)

 	LocalAuthenticator (class in jupyterhub.auth)

 	LocalProcessSpawner (class in jupyterhub.spawner)

 	log_datefmt (jupyterhub.app.JupyterHub attribute)

 	
 	log_format (jupyterhub.app.JupyterHub attribute)

 	log_level (jupyterhub.app.JupyterHub attribute)

 	login_url (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	login_url() (jupyterhub.auth.Authenticator method)

 	logo_file (jupyterhub.app.JupyterHub attribute)

 	logout_url() (jupyterhub.auth.Authenticator method)

M

 	
 	managed (jupyterhub.services.service.Service property)

 	mem_guarantee (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	mem_limit (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	
 module

 	jupyterhub.app

 	jupyterhub.auth

 	jupyterhub.proxy

 	jupyterhub.services.auth

 	jupyterhub.services.service

 	jupyterhub.spawner

 	jupyterhub.user

 	
 	move_certs() (jupyterhub.spawner.Spawner method)

N

 	
 	name (jupyterhub.user.User attribute)

 	named_server_limit_per_user (jupyterhub.app.JupyterHub attribute)

 	
 	normalize_username() (jupyterhub.auth.Authenticator method)

 	notebook_dir (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

O

 	
 	oauth_authorization_url (jupyterhub.services.auth.HubOAuth attribute)

 	oauth_client_id (jupyterhub.services.auth.HubOAuth attribute)

 	oauth_redirect_uri (jupyterhub.services.auth.HubOAuth attribute)

 	oauth_roles (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	oauth_scopes (jupyterhub.services.auth.HubAuth attribute)

 	(jupyterhub.services.auth.HubOAuth attribute)

 	
 	oauth_token_expires_in (jupyterhub.app.JupyterHub attribute)

 	oauth_token_url (jupyterhub.services.auth.HubOAuth attribute)

 	open_sessions (jupyterhub.auth.PAMAuthenticator attribute)

 	options_form (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	options_from_form (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

P

 	
 	pam_normalize_username (jupyterhub.auth.PAMAuthenticator attribute)

 	PAMAuthenticator (class in jupyterhub.auth)

 	password (jupyterhub.auth.DummyAuthenticator attribute)

 	pid_file (jupyterhub.app.JupyterHub attribute)

 	(jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	poll() (jupyterhub.spawner.Spawner method)

 	poll_interval (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	popen_kwargs (jupyterhub.spawner.LocalProcessSpawner attribute)

 	port (jupyterhub.app.JupyterHub attribute)

 	(jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	post_auth_hook (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	
 	post_spawn_stop() (jupyterhub.auth.Authenticator method)

 	post_stop_hook (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	pre_spawn_hook (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	pre_spawn_start() (jupyterhub.auth.Authenticator method)

 	Proxy (class in jupyterhub.proxy)

 	proxy_api_ip (jupyterhub.app.JupyterHub attribute)

 	proxy_api_port (jupyterhub.app.JupyterHub attribute)

 	proxy_auth_token (jupyterhub.app.JupyterHub attribute)

 	proxy_check_interval (jupyterhub.app.JupyterHub attribute)

 	proxy_class (jupyterhub.app.JupyterHub attribute)

 	proxy_cmd (jupyterhub.app.JupyterHub attribute)

R

 	
 	recreate_internal_certs (jupyterhub.app.JupyterHub attribute)

 	redirect_to_server (jupyterhub.app.JupyterHub attribute)

 	refresh_pre_spawn (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	
 	refresh_user() (jupyterhub.auth.Authenticator method)

 	reset_db (jupyterhub.app.JupyterHub attribute)

 	run_post_auth_hook() (jupyterhub.auth.Authenticator method)

S

 	
 	server (jupyterhub.user.User attribute)

 	Service (class in jupyterhub.services.service)

 	service (jupyterhub.auth.PAMAuthenticator attribute)

 	service_check_interval (jupyterhub.app.JupyterHub attribute)

 	service_tokens (jupyterhub.app.JupyterHub attribute)

 	services (jupyterhub.app.JupyterHub attribute)

 	set_cookie() (jupyterhub.services.auth.HubOAuth method)

 	set_state_cookie() (jupyterhub.services.auth.HubOAuth method)

 	shell_cmd (jupyterhub.spawner.LocalProcessSpawner attribute)

 	should_start (jupyterhub.proxy.ConfigurableHTTPProxy attribute)

 	(jupyterhub.proxy.Proxy attribute)

 	show_config (jupyterhub.app.JupyterHub attribute)

 	show_config_json (jupyterhub.app.JupyterHub attribute)

 	shutdown_on_logout (jupyterhub.app.JupyterHub attribute)

 	Spawner (class in jupyterhub.spawner)

 	spawner (jupyterhub.user.User attribute)

 	spawner_class (jupyterhub.app.JupyterHub attribute)

 	
 	ssl_alt_names (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	ssl_alt_names_include_local (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	ssl_cert (jupyterhub.app.JupyterHub attribute)

 	ssl_key (jupyterhub.app.JupyterHub attribute)

 	start() (jupyterhub.proxy.Proxy method)

 	(jupyterhub.spawner.Spawner method)

 	start_timeout (jupyterhub.spawner.LocalProcessSpawner attribute)

 	(jupyterhub.spawner.Spawner attribute)

 	state_cookie_name (jupyterhub.services.auth.HubOAuth property)

 	statsd_host (jupyterhub.app.JupyterHub attribute)

 	statsd_port (jupyterhub.app.JupyterHub attribute)

 	statsd_prefix (jupyterhub.app.JupyterHub attribute)

 	stop() (jupyterhub.proxy.Proxy method)

 	(jupyterhub.spawner.Spawner method)

 	subdomain_host (jupyterhub.app.JupyterHub attribute)

 	system_user_exists() (jupyterhub.auth.LocalAuthenticator method)

T

 	
 	template_namespace() (jupyterhub.spawner.Spawner method)

 	template_paths (jupyterhub.app.JupyterHub attribute)

 	template_vars (jupyterhub.app.JupyterHub attribute)

 	term_timeout (jupyterhub.spawner.LocalProcessSpawner attribute)

 	
 	token_for_code() (jupyterhub.services.auth.HubOAuth method)

 	tornado_settings (jupyterhub.app.JupyterHub attribute)

 	trust_user_provided_tokens (jupyterhub.app.JupyterHub attribute)

 	trusted_alt_names (jupyterhub.app.JupyterHub attribute)

 	trusted_downstream_ips (jupyterhub.app.JupyterHub attribute)

U

 	
 	uids (jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	upgrade_db (jupyterhub.app.JupyterHub attribute)

 	use_legacy_stopped_server_status_code (jupyterhub.app.JupyterHub attribute)

 	User (class in jupyterhub.user)

 	user_for_cookie() (jupyterhub.services.auth.HubAuth method)

 	user_for_token() (jupyterhub.services.auth.HubAuth method)

 	user_redirect_hook (jupyterhub.app.JupyterHub attribute)

 	
 	UserDict (class in jupyterhub.user)

 	username_map (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 	username_pattern (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

V

 	
 	validate_routespec() (jupyterhub.proxy.Proxy method)

 	
 	validate_username() (jupyterhub.auth.Authenticator method)

W

 	
 	whitelist (jupyterhub.auth.Authenticator attribute)

 	(jupyterhub.auth.DummyAuthenticator attribute)

 	(jupyterhub.auth.LocalAuthenticator attribute)

 	(jupyterhub.auth.PAMAuthenticator attribute)

 JupyterHub the hard way

JupyterHub the hard way

This guide has moved to https://github.com/jupyterhub/jupyterhub-the-hard-way/blob/HEAD/docs/installation-guide-hard.md

 <no title>

 Table 1. Available scopes and their hierarchy

	Scope

	Grants permission to:

	(no_scope)

	Identify the owner of the requesting entity.

	self

	The user’s own resources (metascope for users, resolves to (no_scope) for services)

	inherit

	Everything that the token-owning entity can access (metascope for tokens)

	admin:users

	Read, write, create and delete users and their authentication state, not including their servers or tokens.

	 admin:auth_state

	Read a user’s authentication state.

	 users

	Read and write permissions to user models (excluding servers, tokens and authentication state).

	 read:users

	Read user models (excluding including servers, tokens and authentication state).

	 read:users:name

	Read names of users.

	 read:users:groups

	Read users’ group membership.

	 read:users:activity

	Read time of last user activity.

	 list:users

	List users, including at least their names.

	 read:users:name

	Read names of users.

	 users:activity

	Update time of last user activity.

	 read:users:activity

	Read time of last user activity.

	 read:roles:users

	Read user role assignments.

	 delete:users

	Delete users.

	read:roles

	Read role assignments.

	 read:roles:users

	Read user role assignments.

	 read:roles:services

	Read service role assignments.

	 read:roles:groups

	Read group role assignments.

	admin:servers

	Read, start, stop, create and delete user servers and their state.

	 admin:server_state

	Read and write users’ server state.

	 servers

	Start and stop user servers.

	 read:servers

	Read users’ names and their server models (excluding the server state).

	 read:users:name

	Read names of users.

	 delete:servers

	Stop and delete users’ servers.

	tokens

	Read, write, create and delete user tokens.

	 read:tokens

	Read user tokens.

	admin:groups

	Read and write group information, create and delete groups.

	 groups

	Read and write group information, including adding/removing users to/from groups.

	 read:groups

	Read group models.

	 read:groups:name

	Read group names.

	 list:groups

	List groups, including at least their names.

	 read:groups:name

	Read group names.

	 read:roles:groups

	Read group role assignments.

	 delete:groups

	Delete groups.

	list:services

	List services, including at least their names.

	 read:services:name

	Read service names.

	read:services

	Read service models.

	 read:services:name

	Read service names.

	read:hub

	Read detailed information about the Hub.

	access:servers

	Access user servers via API or browser.

	access:services

	Access services via API or browser.

	proxy

	Read information about the proxy’s routing table, sync the Hub with the proxy and notify the Hub about a new proxy.

	shutdown

	Shutdown the hub.

_images/chp-404.png
404: Not Found

No service is registered at this URL

configurable-http-proxy

_images/jhub-fluxogram.jpeg
JupyterHub

HTTP Proxy

nubiadmin =
| ¢ Admin
Config.py — Hub . — . Database

=] »

g Authenticator Spawners i l

Allicons where obtain on Flaticon (ttps://www.flaticon.com/packs/essential-collection)

_images/binder-404.png
Oops!

We can't seem to find the Binder page
you are looking for.

424 error

Here are some helpful tips.

Is this a Binder that you created?

Your Binder stopped due to an error or it was removed due to age or inactivity.

Return to the Binder home page to retry creating your Binder.

Did someone give you this Binder link?

If so, the link is outdated or incorrect. Recheck the link for typos or ask the person who gave you the link for an
updated link. A shareable Binder link should look like https://gke.mybinder.org/v2/gh/....

Binder home page

_images/binderhub-form.png
Build and launch a repository
GitHub repository name or URL

GitHub~" GitHub repository name or URL

Git ref (branch, tag, or commit) Path to a notebook file (optional)

HEAD Path to a notebook file (optional) File v

Copy the URL below and share your Binder with others:

Fill in the fields to see a URL for sharing your Binder. [g]

Expand to see the text below, paste it into your README to show a binder badge: >

_images/jhub-parts.png
Browser

[Configurable HTTP Proxy J

Juser/[name]/

Notebook

| User Database

Hub

/api/auth

_images/login-button.png
Z Jupyter

Sign in with GitHub

_images/login-form.png
Z Jupyter

Username:

Password:

nav.xhtml

 Table of Contents

 		
 JupyterHub

 		
 Installation

 		
 Quickstart

 		
 Prerequisites

 		
 Installation

 		
 Start the Hub server

 		
 Using Docker

 		
 Alternate installation using Docker

 		
 Starting JupyterHub with docker

 		
 Installation Basics

 		
 Platform support

 		
 Planning your installation

 		
 Folders and File Locations

 		
 Get Started

 		
 Configuration Basics

 		
 Generate a default config file

 		
 Start with a specific config file

 		
 Configure using command line options

 		
 Configure for various deployment environments

 		
 Run the proxy separately

 		
 Networking basics

 		
 Set the Proxy’s IP address and port

 		
 Set the Proxy’s REST API communication URL (optional)

 		
 Configure the Hub if the Proxy or Spawners are remote or isolated

 		
 Adjusting the hub’s URL

 		
 Security settings

 		
 Enabling SSL encryption

 		
 Proxy authentication token

 		
 Cookie secret

 		
 Cookies used by JupyterHub authentication

 		
 Authentication and User Basics

 		
 Create a set of allowed users

 		
 Configure admins (admin_users)

 		
 Give admin access to other users’ notebook servers (admin_access)

 		
 Add or remove users from the Hub

 		
 Use LocalAuthenticator to create system users

 		
 Use OAuthenticator to support OAuth with popular service providers

 		
 Use DummyAuthenticator for testing

 		
 Spawners and single-user notebook servers

 		
 External services

 		
 Real-world example to cull idle servers

 		
 API Token basics

 		
 Authenticating to single-user servers using API token

 		
 Configure the idle culler to run as a Hub-Managed Service

 		
 Run cull-idle manually as a standalone script

 		
 Frequently asked questions

 		
 How do I share links to notebooks?

 		
 Institutional FAQ

 		
 For all

 		
 For management

 		
 For IT

 		
 For Technical Leads

 		
 Technical Reference

 		
 Technical Overview

 		
 The Subsystems: Hub, Proxy, Single-User Notebook Server

 		
 How the Subsystems Interact

 		
 The Process from JupyterHub Access to User Login

 		
 Default Behavior

 		
 Customizing JupyterHub

 		
 JupyterHub URL scheme

 		
 /

 		
 /hub/

 		
 /hub/home

 		
 /hub/login

 		
 /hub/logout

 		
 /user/:username[/:servername]

 		
 /hub/user/:username[/:servername]

 		
 /user-redirect/...

 		
 Spawning

 		
 /hub/token

 		
 /hub/admin

 		
 Security Overview

 		
 Semi-trusted and untrusted users

 		
 Protect users from each other

 		
 Mitigate security issues

 		
 Security audits

 		
 Vulnerability reporting

 		
 Authenticators

 		
 The default PAM Authenticator

 		
 The OAuthenticator

 		
 The Dummy Authenticator

 		
 Additional Authenticators

 		
 Technical Overview of Authentication

 		
 pre_spawn_start and post_spawn_stop hooks

 		
 JupyterHub as an OAuth provider

 		
 Spawners

 		
 Examples

 		
 Spawner control methods

 		
 Spawner state

 		
 Spawner options form

 		
 Writing a custom spawner

 		
 Environment variables and command-line arguments

 		
 Spawners, resource limits, and guarantees (Optional)

 		
 Services

 		
 Definition of a Service

 		
 Properties of a Service

 		
 Hub-Managed Services

 		
 Launching a Hub-Managed Service

 		
 Externally-Managed Services

 		
 Writing your own Services

 		
 Hub Authentication and Services

 		
 Writing a custom Proxy implementation

 		
 Subclassing Proxy

 		
 Starting and stopping the proxy

 		
 Encryption

 		
 Routes

 		
 Note on activity tracking

 		
 Running proxy separately from the hub

 		
 Background

 		
 Configuration options

 		
 Proxy configuration

 		
 Docker image

 		
 See also

 		
 Using JupyterHub’s REST API

 		
 What you can do with the API

 		
 Create an API token

 		
 Assigning permissions to a token

 		
 Make an API request

 		
 Paginating API requests

 		
 Enabling users to spawn multiple named-servers via the API

 		
 Learn more about the API

 		
 JupyterHub REST API

 		
 Starting servers with the JupyterHub API

 		
 Checking server status

 		
 Starting servers

 		
 Waiting for a server

 		
 Stopping servers

 		
 Communicating with servers

 		
 Python example

 		
 Monitoring

 		
 List of Prometheus Metrics

 		
 The Hub’s Database

 		
 Default SQLite database

 		
 Using an RDBMS (PostgreSQL, MySQL)

 		
 Notes and Tips

 		
 Working with templates and UI

 		
 Custom Templates

 		
 Extending Templates

 		
 Page Announcements

 		
 Deploying JupyterHub in “API only mode”

 		
 Limited UI customization via templates

 		
 Rich UI customization with REST API based apps

 		
 Disabling Hub UI

 		
 Eventlogging and Telemetry

 		
 How to emit events

 		
 Event schemas

 		
 Configuring user environments

 		
 Installing packages

 		
 Configuring Jupyter and IPython

 		
 Installing kernelspecs

 		
 Multi-user hosts vs. Containers

 		
 Named servers

 		
 Switching back to classic notebook

 		
 Configuration examples

 		
 Configure GitHub OAuth

 		
 Using a reverse proxy

 		
 nginx

 		
 Apache

 		
 Run JupyterHub without root privileges using sudo

 		
 Overview

 		
 Create a user

 		
 Set up sudospawner

 		
 Edit /etc/sudoers

 		
 Test sudo setup

 		
 Enable PAM for non-root

 		
 Test that PAM works

 		
 Make a directory for JupyterHub

 		
 Start jupyterhub

 		
 Troubleshooting: SELinux

 		
 Troubleshooting: PAM session errors

 		
 Configuration Reference

 		
 JupyterHub configuration

 		
 JupyterHub help command output

 		
 JupyterHub and OAuth

 		
 Key OAuth terms

 		
 One oauth flow

 		
 Full sequence of OAuth in JupyterHub

 		
 Token caches and expiry

 		
 Extra bits

 		
 Administrator’s Guide

 		
 Troubleshooting

 		
 Behavior

 		
 Errors

 		
 How do I…?

 		
 Troubleshooting commands

 		
 Upgrading JupyterHub

 		
 Read the Changelog

 		
 Notify your users

 		
 Backup database & config

 		
 Shutdown JupyterHub

 		
 Upgrade JupyterHub packages

 		
 Upgrade JupyterHub database

 		
 Start JupyterHub

 		
 Changelog

 		
 Unreleased

 		
 2.0.0

 		
 1.5

 		
 1.4

 		
 1.3

 		
 1.2

 		
 1.1

 		
 1.0

 		
 0.9

 		
 0.8

 		
 0.7

 		
 0.6

 		
 0.5 - 2016-03-07

 		
 0.4

 		
 0.3 - 2015-11-04

 		
 0.2 - 2015-07-12

 		
 0.1 - 2015-03-07

 		
 JupyterHub API

 		
 Application configuration

 		
 Module: jupyterhub.app

 		
 Authenticators

 		
 Module: jupyterhub.auth

 		
 Spawners

 		
 Module: jupyterhub.spawner

 		
 Proxies

 		
 Module: jupyterhub.proxy

 		
 Users

 		
 Module: jupyterhub.user

 		
 Services

 		
 Module: jupyterhub.services.service

 		
 Services Authentication

 		
 Module: jupyterhub.services.auth

 		
 JupyterHub RBAC

 		
 Motivation

 		
 Definitions

 		
 Technical Overview

 		
 Roles

 		
 Scopes in JupyterHub

 		
 Use Cases

 		
 Technical Implementation

 		
 Upgrading JupyterHub with RBAC framework

 		
 Contributing

 		
 Community communication channels

 		
 Setting up a development install

 		
 System requirements

 		
 Setting up a development install

 		
 Using DummyAuthenticator & SimpleLocalProcessSpawner

 		
 Troubleshooting

 		
 Contributing Documentation

 		
 Building documentation locally

 		
 Documentation conventions

 		
 Testing JupyterHub

 		
 Running the tests

 		
 Troubleshooting Test Failures

 		
 The JupyterHub roadmap

 		
 Using the roadmap

 		
 The roadmap proper

 		
 Reporting security issues in Jupyter or JupyterHub

 		
 About

 		
 Contributors

 		
 Changelog

 		
 Unreleased

 		
 2.0.0

 		
 1.5

 		
 1.4

 		
 1.3

 		
 1.2

 		
 1.1

 		
 1.0

 		
 0.9

 		
 0.8

 		
 0.7

 		
 0.6

 		
 0.5 - 2016-03-07

 		
 0.4

 		
 0.3 - 2015-11-04

 		
 0.2 - 2015-07-12

 		
 0.1 - 2015-03-07

 		
 A Gallery of JupyterHub Deployments

 		
 Academic Institutions, Research Labs, and Supercomputer Centers

 		
 Service Providers

 		
 Miscellaneous

_images/not-running.png
C Jjupyter Home Token Admin admin

Server is not running. Would you like to start it?

_images/rbac-api-request-chart.png
Making
API

request

Y

Resolve token scopes

Y

Are token's
scopes a subset
of the owner's
scopes?

Get scopes required
to access API

Y Y

Set of token's Set of scopes
scopes for APl access

Y

Raise warning

Y

Intersection of token's
and owner's scopes

l

—>—

Are API scopes
present in the
supplied scope
set?

—No

Y

API response

Are sub-scopes of
the API scopes
present in the
supplied scope
set?

|
Yes

Filtered API
response

\/

Access denied

_images/named-servers-admin.png
User (3) “ Admin - Last Activity < Running (1) ¢

Add Users Stop All Shutdown Hub

admin admin Never start server

professor Never start server
professor/research a minute ago stop server

professor/teaching 11 minutes ago start server

_images/named-servers-home.png
Named Servers

In addition to your default server, you may have additional server(s) with names. This allows you to have more than
one server running at the same time.

Server name URL Last activity Actions
Name your server Add New Server
research /user/professor/research a minute ago

teaching 11 minutes ago

_images/spawn-form.png
Spawner options

Extra notebook CLI arguments

e.g. --debug

Environment variables (one per line)

YOURNAME=kaylee

2

_images/spawn-pending.png
Your server is starting up.
You will be redirected automatically when it's ready for you.

stage 6

v Event log
Server requested
stage 0
stage 1
stage 2
stage 3

stage 4

_images/rbac-token-request-chart.png
Requesting
API token

Specific

Y

roles No
requested?
|
Yes
Resolve token scopes
Resolve Resolve owner's
owner's roles group roles

I |
Y

Set of token's
scopes

Set of token
owner's scopes

Error raised No —

\

Are token's
scopes a subset
of the owner's

default role

v Token issued with Token issued with
requested roles

scopes?

_images/server-not-running.png
:: Ju pyter hub Home Token username = ® Logout

Server not running

Your server is not running. Would you like to start it?

_images/token-page.png
Request new API token

This note will help you keep track of what your tokens are for.

Note

note to identify your new token