

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	JupyterHub 0.7.0 documentation »

JupyterHub

With JupyterHub you can create a multi-user Hub which spawns, manages,
and proxies multiple instances of the single-user
Jupyter notebook [https://jupyter-notebook.readthedocs.io/en/latest/] server.
Due to its flexibility and customization options, JupyterHub can be used to
serve notebooks to a class of students, a corporate data science group, or a
scientific research group.

[image: JupyterHub subsystems]
Three subsystems make up JupyterHub:

	a multi-user Hub (tornado process)

	a configurable http proxy (node-http-proxy)

	multiple single-user Jupyter notebook servers (Python/IPython/tornado)

JupyterHub’s basic flow of operations includes:

	The Hub spawns a proxy

	The proxy forwards all requests to the Hub by default

	The Hub handles user login and spawns single-user servers on demand

	The Hub configures the proxy to forward URL prefixes to the single-user notebook servers

For convenient administration of the Hub, its users, and Services
(added in version 7.0), JupyterHub also provides a
REST API [http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyterhub/jupyterhub/master/docs/rest-api.yml#!/default].

Contents

User Guide

	Quickstart - Installation

	Getting started with JupyterHub

	How JupyterHub works

	Web Security in JupyterHub

	Using JupyterHub’s REST API

Configuration Guide

	Authenticators

	Spawners

	Services

	Configuration examples

	Upgrading JupyterHub and its database

	Troubleshooting

API Reference

	The JupyterHub API

About JupyterHub

	Change log summary

	Contributors

Indices and tables

	Index

	Module Index

Questions? Suggestions?

	Jupyter mailing list [https://groups.google.com/forum/#!forum/jupyter]

	Jupyter website [https://jupyter.org]

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Quickstart - Installation

Prerequisites

Before installing JupyterHub, you will need:

	Python [https://www.python.org/downloads/] 3.3 or greater

An understanding of using pip [https://pip.pypa.io/en/stable/] or
conda [http://conda.pydata.org/docs/get-started.html] for
installing Python packages is helpful.

	nodejs/npm [https://www.npmjs.com/]

Install nodejs/npm [https://docs.npmjs.com/getting-started/installing-node],
using your operating system’s package manager. For example, install on Linux
(Debian/Ubuntu) using:

sudo apt-get install npm nodejs-legacy

(The nodejs-legacy package installs the node executable and is currently
required for npm to work on Debian/Ubuntu.)

	TLS certificate and key for HTTPS communication

	Domain name

Before running the single-user notebook servers (which may be on the same
system as the Hub or not):

	Jupyter Notebook [https://jupyter.readthedocs.io/en/latest/install.html]
version 4 or greater

Installation

JupyterHub can be installed with pip or conda and the proxy with npm:

pip, npm:

python3 -m pip install jupyterhub
npm install -g configurable-http-proxy

conda (one command installs jupyterhub and proxy):

conda install -c conda-forge jupyterhub

To test your installation:

jupyterhub -h
configurable-http-proxy -h

If you plan to run notebook servers locally, you will need also to install
Jupyter notebook:

pip:

python3 -m pip install notebook

conda:

conda install notebook

Start the Hub server

To start the Hub server, run the command:

jupyterhub

Visit https://localhost:8000 in your browser, and sign in with your unix
credentials.

To allow multiple users to sign into the Hub server, you must start jupyterhub as a privileged user, such as root:

sudo jupyterhub

The wiki [https://github.com/jupyterhub/jupyterhub/wiki/Using-sudo-to-run-JupyterHub-without-root-privileges]
describes how to run the server as a less privileged user, which requires
additional configuration of the system.

Basic Configuration

The getting started document contains
detailed information abouts configuring a JupyterHub deployment.

The JupyterHub tutorial provides a video and documentation that explains
and illustrates the fundamental steps for installation and configuration.
Repo [https://github.com/jupyterhub/jupyterhub-tutorial]
| Tutorial documentation [http://jupyterhub-tutorial.readthedocs.io/en/latest/]

Generate a default configuration file

Generate a default config file:

jupyterhub --generate-config

Customize the configuration, authentication, and process spawning

Spawn the server on 10.0.1.2:443 with https:

jupyterhub --ip 10.0.1.2 --port 443 --ssl-key my_ssl.key --ssl-cert my_ssl.cert

The authentication and process spawning mechanisms can be replaced,
which should allow plugging into a variety of authentication or process
control environments. Some examples, meant as illustration and testing of this
concept, are:

	Using GitHub OAuth instead of PAM with OAuthenticator [https://github.com/jupyterhub/oauthenticator]

	Spawning single-user servers with Docker, using the DockerSpawner [https://github.com/jupyterhub/dockerspawner]

Alternate Installation using Docker

A ready to go docker image for JupyterHub [https://hub.docker.com/r/jupyterhub/jupyterhub/]
gives a straightforward deployment of JupyterHub.

Note: This jupyterhub/jupyterhub docker image is only an image for running
the Hub service itself. It does not provide the other Jupyter components, such
as Notebook installation, which are needed by the single-user servers.
To run the single-user servers, which may be on the same system as the Hub or
not, Jupyter Notebook version 4 or greater must be installed.

Starting JupyterHub with docker

The JupyterHub docker image can be started with the following command:

docker run -d --name jupyterhub jupyterhub/jupyterhub jupyterhub

This command will create a container named jupyterhub that you can
stop and resume with docker stop/start.

The Hub service will be listening on all interfaces at port 8000, which makes
this a good choice for testing JupyterHub on your desktop or laptop.

If you want to run docker on a computer that has a public IP then you should
(as in MUST) secure it with ssl by adding ssl options to your docker
configuration or using a ssl enabled proxy.

Mounting volumes [https://docs.docker.com/engine/userguide/containers/dockervolumes/]
will allow you to store data outside the docker image (host system) so it will be persistent,
even when you start a new image.

The command docker exec -it jupyterhub bash will spawn a root shell in your
docker container. You can use the root shell to create system users in the container.
These accounts will be used for authentication in JupyterHub’s default
configuration.

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Getting started with JupyterHub

This section contains getting started information on the following topics:

	Technical Overview

	Installation

	Configuration

	Networking

	Security

	Authentication and users

	Spawners and single-user notebook servers

	External Services

Technical Overview

JupyterHub is a set of processes that together provide a single user Jupyter
Notebook server for each person in a group.

Three subsystems

Three major subsystems run by the jupyterhub command line program:

	Single-User Notebook Server: a dedicated, single-user, Jupyter Notebook server is
started for each user on the system when the user logs in. The object that
starts these servers is called a Spawner.

	Proxy: the public facing part of JupyterHub that uses a dynamic proxy
to route HTTP requests to the Hub and Single User Notebook Servers.

	Hub: manages user accounts, authentication, and coordinates Single User
Notebook Servers using a Spawner.

[image: JupyterHub subsystems]

Deployment server

To use JupyterHub, you need a Unix server (typically Linux) running somewhere
that is accessible to your team on the network. The JupyterHub server can be
on an internal network at your organization, or it can run on the public
internet (in which case, take care with the Hub’s
security).

Basic operation

Users access JupyterHub through a web browser, by going to the IP address or
the domain name of the server.

Basic principles of operation:

	Hub spawns proxy

	Proxy forwards all requests to hub by default

	Hub handles login, and spawns single-user servers on demand

	Hub configures proxy to forward url prefixes to single-user servers

Different authenticators control access
to JupyterHub. The default one (PAM) uses the user accounts on the server where
JupyterHub is running. If you use this, you will need to create a user account
on the system for each user on your team. Using other authenticators, you can
allow users to sign in with e.g. a GitHub account, or with any single-sign-on
system your organization has.

Next, spawners control how JupyterHub starts
the individual notebook server for each user. The default spawner will
start a notebook server on the same machine running under their system username.
The other main option is to start each server in a separate container, often
using Docker.

Default behavior

IMPORTANT: You should not run JupyterHub without SSL encryption on a public network.

See Security documentation for how to configure JupyterHub to use SSL,
or put it behind SSL termination in another proxy server, such as nginx.

Deprecation note: Removed --no-ssl in version 0.7.

JupyterHub versions 0.5 and 0.6 require extra confirmation via --no-ssl to
allow running without SSL using the command jupyterhub --no-ssl. The
--no-ssl command line option is not needed anymore in version 0.7.

To start JupyterHub in its default configuration, type the following at the command line:

 sudo jupyterhub

The default Authenticator that ships with JupyterHub authenticates users
with their system name and password (via PAM [https://en.wikipedia.org/wiki/Pluggable_authentication_module]).
Any user on the system with a password will be allowed to start a single-user notebook server.

The default Spawner starts servers locally as each user, one dedicated server per user.
These servers listen on localhost, and start in the given user’s home directory.

By default, the Proxy listens on all public interfaces on port 8000.
Thus you can reach JupyterHub through either:

	http://localhost:8000

	or any other public IP or domain pointing to your system.

In their default configuration, the other services, the Hub and Single-User Servers,
all communicate with each other on localhost only.

By default, starting JupyterHub will write two files to disk in the current working directory:

	jupyterhub.sqlite is the sqlite database containing all of the state of the Hub.
This file allows the Hub to remember what users are running and where,
as well as other information enabling you to restart parts of JupyterHub separately. It is
important to note that this database contains no sensitive information other than Hub
usernames.

	jupyterhub_cookie_secret is the encryption key used for securing cookies.
This file needs to persist in order for restarting the Hub server to avoid invalidating cookies.
Conversely, deleting this file and restarting the server effectively invalidates all login cookies.
The cookie secret file is discussed in the Cookie Secret documentation.

The location of these files can be specified via configuration, discussed below.

Installation

See the project’s README [https://github.com/jupyterhub/jupyterhub/blob/master/README.md]
for help installing JupyterHub.

Planning your installation

Prior to beginning installation, it’s helpful to consider some of the following:

	deployment system (bare metal, Docker)

	Authentication (PAM, OAuth, etc.)

	Spawner of singleuser notebook servers (Docker, Batch, etc.)

	Services (nbgrader, etc.)

	JupyterHub database (default SQLite; traditional RDBMS such as PostgreSQL,)
MySQL, or other databases supported by SQLAlchemy [http://www.sqlalchemy.org])

Folders and File Locations

It is recommended to put all of the files used by JupyterHub into standard
UNIX filesystem locations.

	/srv/jupyterhub for all security and runtime files

	/etc/jupyterhub for all configuration files

	/var/log for log files

Configuration

JupyterHub is configured in two ways:

	Configuration file

	Command-line arguments

Configuration file

By default, JupyterHub will look for a configuration file (which may not be created yet)
named jupyterhub_config.py in the current working directory.
You can create an empty configuration file with:

jupyterhub --generate-config

This empty configuration file has descriptions of all configuration variables and their default
values. You can load a specific config file with:

jupyterhub -f /path/to/jupyterhub_config.py

See also: general docs [http://ipython.org/ipython-doc/dev/development/config.html]
on the config system Jupyter uses.

Command-line arguments

Type the following for brief information about the command-line arguments:

jupyterhub -h

or:

jupyterhub --help-all

for the full command line help.

All configurable options are technically configurable on the command-line,
even if some are really inconvenient to type. Just replace the desired option,
c.Class.trait, with --Class.trait. For example, to configure the
c.Spawner.notebook_dir trait from the command-line:

jupyterhub --Spawner.notebook_dir='~/assignments'

Networking

Configuring the Proxy’s IP address and port

The Proxy’s main IP address setting determines where JupyterHub is available to users.
By default, JupyterHub is configured to be available on all network interfaces
('') on port 8000. Note: Use of '*' is discouraged for IP configuration;
instead, use of '0.0.0.0' is preferred.

Changing the IP address and port can be done with the following command line
arguments:

jupyterhub --ip=192.168.1.2 --port=443

Or by placing the following lines in a configuration file:

c.JupyterHub.ip = '192.168.1.2'
c.JupyterHub.port = 443

Port 443 is used as an example since 443 is the default port for SSL/HTTPS.

Configuring only the main IP and port of JupyterHub should be sufficient for most deployments of JupyterHub.
However, more customized scenarios may need additional networking details to
be configured.

Configuring the Proxy’s REST API communication IP address and port (optional)

The Hub service talks to the proxy via a REST API on a secondary port,
whose network interface and port can be configured separately.
By default, this REST API listens on port 8081 of localhost only.

If running the Proxy separate from the Hub,
configure the REST API communication IP address and port with:

ideally a private network address
c.JupyterHub.proxy_api_ip = '10.0.1.4'
c.JupyterHub.proxy_api_port = 5432

Configuring the Hub if Spawners or Proxy are remote or isolated in containers

The Hub service also listens only on localhost (port 8080) by default.
The Hub needs needs to be accessible from both the proxy and all Spawners.
When spawning local servers, an IP address setting of localhost is fine.
If either the Proxy or (more likely) the Spawners will be remote or
isolated in containers, the Hub must listen on an IP that is accessible.

c.JupyterHub.hub_ip = '10.0.1.4'
c.JupyterHub.hub_port = 54321

Security

IMPORTANT: You should not run JupyterHub without SSL encryption on a public network.

Deprecation note: Removed --no-ssl in version 0.7.

JupyterHub versions 0.5 and 0.6 require extra confirmation via --no-ssl to
allow running without SSL using the command jupyterhub --no-ssl. The
--no-ssl command line option is not needed anymore in version 0.7.

Security is the most important aspect of configuring Jupyter. There are four main aspects of the
security configuration:

	SSL encryption (to enable HTTPS)

	Cookie secret (a key for encrypting browser cookies)

	Proxy authentication token (used for the Hub and other services to authenticate to the Proxy)

	Periodic security audits

Note that the Hub hashes all secrets (e.g., auth tokens) before storing them in its
database. A loss of control over read-access to the database should have no security impact
on your deployment.

SSL encryption

Since JupyterHub includes authentication and allows arbitrary code execution, you should not run
it without SSL (HTTPS). This will require you to obtain an official, trusted SSL certificate or
create a self-signed certificate. Once you have obtained and installed a key and certificate you
need to specify their locations in the configuration file as follows:

c.JupyterHub.ssl_key = '/path/to/my.key'
c.JupyterHub.ssl_cert = '/path/to/my.cert'

It is also possible to use letsencrypt (https://letsencrypt.org/) to obtain
a free, trusted SSL certificate. If you run letsencrypt using the default
options, the needed configuration is (replace mydomain.tld by your fully
qualified domain name):

c.JupyterHub.ssl_key = '/etc/letsencrypt/live/{mydomain.tld}/privkey.pem'
c.JupyterHub.ssl_cert = '/etc/letsencrypt/live/{mydomain.tld}/fullchain.pem'

If the fully qualified domain name (FQDN) is example.com, the following
would be the needed configuration:

c.JupyterHub.ssl_key = '/etc/letsencrypt/live/example.com/privkey.pem'
c.JupyterHub.ssl_cert = '/etc/letsencrypt/live/example.com/fullchain.pem'

Some cert files also contain the key, in which case only the cert is needed. It is important that
these files be put in a secure location on your server, where they are not readable by regular
users.

Note on chain certificates: If you are using a chain certificate, see also
chained certificate for SSL in the JupyterHub troubleshooting FAQ).

Note: In certain cases, e.g. behind SSL termination in nginx, allowing no SSL
running on the hub may be desired.

Cookie secret

The cookie secret is an encryption key, used to encrypt the browser cookies used for
authentication. If this value changes for the Hub, all single-user servers must also be restarted.
Normally, this value is stored in a file, the location of which can be specified in a config file
as follows:

c.JupyterHub.cookie_secret_file = '/srv/jupyterhub/cookie_secret'

The content of this file should be a long random string encoded in MIME Base64. An example would be to generate this file as:

openssl rand -base64 2048 > /srv/jupyterhub/cookie_secret

In most deployments of JupyterHub, you should point this to a secure location on the file
system, such as /srv/jupyterhub/cookie_secret. If the cookie secret file doesn’t exist when
the Hub starts, a new cookie secret is generated and stored in the file. The
file must not be readable by group or other or the server won’t start.
The recommended permissions for the cookie secret file are 600 (owner-only rw).

If you would like to avoid the need for files, the value can be loaded in the Hub process from
the JPY_COOKIE_SECRET environment variable, which is a hex-encoded string. You
can set it this way:

export JPY_COOKIE_SECRET=`openssl rand -hex 1024`

For security reasons, this environment variable should only be visible to the Hub.
If you set it dynamically as above, all users will be logged out each time the
Hub starts.

You can also set the cookie secret in the configuration file itself,jupyterhub_config.py,
as a binary string:

c.JupyterHub.cookie_secret = bytes.fromhex('VERY LONG SECRET HEX STRING')

Proxy authentication token

The Hub authenticates its requests to the Proxy using a secret token that
the Hub and Proxy agree upon. The value of this string should be a random
string (for example, generated by openssl rand -hex 32). You can pass
this value to the Hub and Proxy using either the CONFIGPROXY_AUTH_TOKEN
environment variable:

export CONFIGPROXY_AUTH_TOKEN=`openssl rand -hex 32`

This environment variable needs to be visible to the Hub and Proxy.

Or you can set the value in the configuration file, jupyterhub_config.py:

c.JupyterHub.proxy_auth_token = '0bc02bede919e99a26de1e2a7a5aadfaf6228de836ec39a05a6c6942831d8fe5'

If you don’t set the Proxy authentication token, the Hub will generate a random key itself, which
means that any time you restart the Hub you must also restart the Proxy. If the proxy is a
subprocess of the Hub, this should happen automatically (this is the default configuration).

Another time you must set the Proxy authentication token yourself is if
you want other services, such as nbgrader [https://github.com/jupyter/nbgrader]
to also be able to connect to the Proxy.

Security audits

We recommend that you do periodic reviews of your deployment’s security. It’s
good practice to keep JupyterHub, configurable-http-proxy, and nodejs
versions up to date.

A handy website for testing your deployment is
Qualsys’ SSL analyzer tool [https://www.ssllabs.com/ssltest/analyze.html].

Authentication and users

The default Authenticator uses PAM [https://en.wikipedia.org/wiki/Pluggable_authentication_module] to authenticate system users with
their username and password. The default behavior of this Authenticator
is to allow any user with an account and password on the system to login.

Creating a whitelist of users

You can restrict which users are allowed to login with Authenticator.whitelist:

c.Authenticator.whitelist = {'mal', 'zoe', 'inara', 'kaylee'}

Managing Hub administrators

Admin users of JupyterHub have the ability to take actions on users’ behalf,
such as stopping and restarting their servers,
and adding and removing new users from the whitelist.
Any users in the admin list are automatically added to the whitelist,
if they are not already present.
The set of initial Admin users can configured as follows:

c.Authenticator.admin_users = {'mal', 'zoe'}

If JupyterHub.admin_access is True (not default),
then admin users have permission to log in as other users on their respective machines, for debugging.
You should make sure your users know if admin_access is enabled.

Note: additional configuration examples are provided in this guide’s
Configuration Examples section.

Add or remove users from the Hub

Users can be added and removed to the Hub via the admin panel or REST API. These users will be
added to the whitelist and database. Restarting the Hub will not require manually updating the
whitelist in your config file, as the users will be loaded from the database. This means that
after starting the Hub once, it is not sufficient to remove users from the whitelist in your
config file. You must also remove them from the database, either by discarding the database file,
or via the admin UI.

The default PAMAuthenticator is one case of a special kind of authenticator, called a
LocalAuthenticator, indicating that it manages users on the local system. When you add a user to
the Hub, a LocalAuthenticator checks if that user already exists. Normally, there will be an
error telling you that the user doesn’t exist. If you set the configuration value

c.LocalAuthenticator.create_system_users = True

however, adding a user to the Hub that doesn’t already exist on the system will result in the Hub
creating that user via the system adduser command line tool. This option is typically used on
hosted deployments of JupyterHub, to avoid the need to manually create all your users before
launching the service. It is not recommended when running JupyterHub in situations where
JupyterHub users maps directly onto UNIX users.

Spawners and single-user notebook servers

Since the single-user server is an instance of jupyter notebook, an entire separate
multi-process application, there are many aspect of that server can configure, and a lot of ways
to express that configuration.

At the JupyterHub level, you can set some values on the Spawner. The simplest of these is
Spawner.notebook_dir, which lets you set the root directory for a user’s server. This root
notebook directory is the highest level directory users will be able to access in the notebook
dashboard. In this example, the root notebook directory is set to ~/notebooks, where ~ is
expanded to the user’s home directory.

c.Spawner.notebook_dir = '~/notebooks'

You can also specify extra command-line arguments to the notebook server with:

c.Spawner.args = ['--debug', '--profile=PHYS131']

This could be used to set the users default page for the single user server:

c.Spawner.args = ['--NotebookApp.default_url=/notebooks/Welcome.ipynb']

Since the single-user server extends the notebook server application,
it still loads configuration from the ipython_notebook_config.py config file.
Each user may have one of these files in $HOME/.ipython/profile_default/.
IPython also supports loading system-wide config files from /etc/ipython/,
which is the place to put configuration that you want to affect all of your users.

External services

JupyterHub has a REST API that can be used by external services like the
cull_idle_servers [https://github.com/jupyterhub/jupyterhub/blob/master/examples/cull-idle/cull_idle_servers.py]
script which monitors and kills idle single-user servers periodically. In order to run such an
external service, you need to provide it an API token. In the case of cull_idle_servers, it is passed
as the environment variable called JPY_API_TOKEN.

Currently there are two ways of registering that token with JupyterHub. The first one is to use
the jupyterhub command to generate a token for a specific hub user:

jupyterhub token <username>

As of version 0.6.0, the preferred way of doing this is to first generate an API token:

openssl rand -hex 32

and then write it to your JupyterHub configuration file (note that the key is the token while the value is the username):

c.JupyterHub.api_tokens = {'token' : 'username'}

Upon restarting JupyterHub, you should see a message like below in the logs:

Adding API token for <username>

Now you can run your script, i.e. cull_idle_servers, by providing it the API token and it will authenticate through
the REST API to interact with it.

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

How JupyterHub works

JupyterHub is a multi-user server that manages and proxies multiple instances of the single-user Jupyter notebook server.

There are three basic processes involved:

	multi-user Hub (Python/Tornado)

	configurable http proxy [https://github.com/jupyterhub/configurable-http-proxy] (node-http-proxy)

	multiple single-user IPython notebook servers (Python/IPython/Tornado)

The proxy is the only process that listens on a public interface.
The Hub sits behind the proxy at /hub.
Single-user servers sit behind the proxy at /user/[username].

Logging in

When a new browser logs in to JupyterHub, the following events take place:

	Login data is handed to the Authenticator instance for validation

	The Authenticator returns the username, if login information is valid

	A single-user server instance is Spawned for the logged-in user

	When the server starts, the proxy is notified to forward /user/[username]/* to the single-user server

	Two cookies are set, one for /hub/ and another for /user/[username],
containing an encrypted token.

	The browser is redirected to /user/[username], which is handled by the single-user server

Logging into a single-user server is authenticated via the Hub:

	On request, the single-user server forwards the encrypted cookie to the Hub for verification

	The Hub replies with the username if it is a valid cookie

	If the user is the owner of the server, access is allowed

	If it is the wrong user or an invalid cookie, the browser is redirected to /hub/login

Customizing JupyterHub

There are two basic extension points for JupyterHub: How users are authenticated,
and how their server processes are started.
Each is governed by a customizable class,
and JupyterHub ships with just the most basic version of each.

To enable custom authentication and/or spawning,
subclass Authenticator or Spawner,
and override the relevant methods.

Authentication

Authentication is customizable via the Authenticator class.
Authentication can be replaced by any mechanism,
such as OAuth, Kerberos, etc.

JupyterHub only ships with PAM [https://en.wikipedia.org/wiki/Pluggable_authentication_module] authentication,
which requires the server to be run as root,
or at least with access to the PAM service,
which regular users typically do not have
(on Ubuntu, this requires being added to the shadow group).

More info on custom Authenticators.

See a list of custom Authenticators on the wiki [https://github.com/jupyterhub/jupyterhub/wiki/Authenticators].

Spawning

Each single-user server is started by a Spawner.
The Spawner represents an abstract interface to a process,
and needs to be able to take three actions:

	start the process

	poll whether the process is still running

	stop the process

More info on custom Spawners.

See a list of custom Spawners on the wiki [https://github.com/jupyterhub/jupyterhub/wiki/Spawners].

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Web Security in JupyterHub

JupyterHub is designed to be a simple multi-user server for modestly sized
groups of semi-trusted users. While the design reflects serving semi-trusted
users, JupyterHub is not necessarily unsuitable for serving untrusted users.
Using JupyterHub with untrusted users does mean more work and much care is
required to secure a Hub against untrusted users, with extra caution on
protecting users from each other as the Hub is serving untrusted users.

One aspect of JupyterHub’s design simplicity for semi-trusted users is that
the Hub and single-user servers are placed in a single domain, behind a
proxy [https://github.com/jupyterhub/configurable-http-proxy]. As a result, if the Hub is serving untrusted
users, many of the web’s cross-site protections are not applied between
single-user servers and the Hub, or between single-user servers and each
other, since browsers see the whole thing (proxy, Hub, and single user
servers) as a single website.

To protect users from each other, a user must never be able to write arbitrary
HTML and serve it to another user on the Hub’s domain. JupyterHub’s
authentication setup prevents this because only the owner of a given
single-user server is allowed to view user-authored pages served by their
server. To protect all users from each other, JupyterHub administrators must
ensure that:

	A user does not have permission to modify their single-user server:
	A user may not install new packages in the Python environment that runs
their server.

	If the PATH is used to resolve the single-user executable (instead of an
absolute path), a user may not create new files in any PATH directory
that precedes the directory containing jupyterhub-singleuser.

	A user may not modify environment variables (e.g. PATH, PYTHONPATH) for
their single-user server.

	A user may not modify the configuration of the notebook server
(the ~/.jupyter or JUPYTER_CONFIG_DIR directory).

If any additional services are run on the same domain as the Hub, the services
must never display user-authored HTML that is neither sanitized nor sandboxed
(e.g. IFramed) to any user that lacks authentication as the author of a file.

Mitigations

There are two main configuration options provided by JupyterHub to mitigate
these issues:

Subdomains

JupyterHub 0.5 adds the ability to run single-user servers on their own
subdomains, which means the cross-origin protections between servers has the
desired effect, and user servers and the Hub are protected from each other. A
user’s server will be at username.jupyter.mydomain.com, etc. This requires
all user subdomains to point to the same address, which is most easily
accomplished with wildcard DNS. Since this spreads the service across multiple
domains, you will need wildcard SSL, as well. Unfortunately, for many
institutional domains, wildcard DNS and SSL are not available, but if you do
plan to serve untrusted users, enabling subdomains is highly encouraged, as it
resolves all of the cross-site issues.

Disabling user config

If subdomains are not available or not desirable, 0.5 also adds an option
Spawner.disable_user_config, which you can set to prevent the user-owned
configuration files from being loaded. This leaves only package installation
and PATHs as things the admin must enforce.

For most Spawners, PATH is not something users can influence, but care should
be taken to ensure that the Spawn does not evaluate shell configuration
files prior to launching the server.

Package isolation is most easily handled by running the single-user server in
a virtualenv with disabled system-site-packages.

Extra notes

It is important to note that the control over the environment only affects the
single-user server, and not the environment(s) in which the user’s kernel(s)
may run. Installing additional packages in the kernel environment does not
pose additional risk to the web application’s security.

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Using JupyterHub’s REST API

Using the JupyterHub REST API, you can perform actions on the Hub,
such as:

	checking which users are active

	adding or removing users

	stopping or starting single user notebook servers

	authenticating services

A REST [https://en.wikipedia.org/wiki/Representational_state_transfer]
API provides a standard way for users to get and send information to the
Hub.

Creating an API token

To send requests using JupyterHub API, you must pass an API token with the
request. You can create a token for an individual user using the following
command:

jupyterhub token USERNAME

Adding tokens to the config file

You may also add a dictionary of API tokens and usernames to the hub’s
configuration file, jupyterhub_config.py:

c.JupyterHub.api_tokens = {
 'secret-token': 'username',
}

Making an API request

To authenticate your requests, pass the API token in the request’s
Authorization header.

Example: List the hub’s users

Using the popular Python requests library, the following code sends an API
request and an API token for authorization:

import requests

api_url = 'http://127.0.0.1:8081/hub/api'

r = requests.get(api_url + '/users',
 headers={
 'Authorization': 'token %s' % token,
 }
)

r.raise_for_status()
users = r.json()

Learning more about the API

You can see the full JupyterHub REST API for details.
The same REST API Spec can be viewed in a more interactive style on swagger’s petstore [http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyterhub/jupyterhub/master/docs/rest-api.yml#!/default].
Both resources contain the same information and differ only in its display.
Note: The Swagger specification is being renamed the OpenAPI Initiative [https://www.openapis.org/].

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Authenticators

The Authenticator [https://github.com/jupyterhub/jupyterhub/blob/master/jupyterhub/auth.py] is the mechanism for authorizing users.
Basic authenticators use simple username and password authentication.
JupyterHub ships only with a PAM [https://en.wikipedia.org/wiki/Pluggable_authentication_module]-based Authenticator,
for logging in with local user accounts.

You can use custom Authenticator subclasses to enable authentication via other systems.
One such example is using GitHub OAuth [https://developer.github.com/v3/oauth/].

Because the username is passed from the Authenticator to the Spawner,
a custom Authenticator and Spawner are often used together.

See a list of custom Authenticators on the wiki [https://github.com/jupyterhub/jupyterhub/wiki/Authenticators].

Basics of Authenticators

A basic Authenticator has one central method:

Authenticator.authenticate

Authenticator.authenticate(handler, data)

This method is passed the tornado RequestHandler and the POST data from the login form.
Unless the login form has been customized, data will have two keys:

	username (self-explanatory)

	password (also self-explanatory)

authenticate‘s job is simple:

	return a username (non-empty str)
of the authenticated user if authentication is successful

	return None otherwise

Writing an Authenticator that looks up passwords in a dictionary
requires only overriding this one method:

from tornado import gen
from IPython.utils.traitlets import Dict
from jupyterhub.auth import Authenticator

class DictionaryAuthenticator(Authenticator):

 passwords = Dict(config=True,
 help="""dict of username:password for authentication"""
)

 @gen.coroutine
 def authenticate(self, handler, data):
 if self.passwords.get(data['username']) == data['password']:
 return data['username']

Authenticator.whitelist

Authenticators can specify a whitelist of usernames to allow authentication.
For local user authentication (e.g. PAM), this lets you limit which users
can login.

Normalizing and validating usernames

Since the Authenticator and Spawner both use the same username,
sometimes you want to transform the name coming from the authentication service
(e.g. turning email addresses into local system usernames) before adding them to the Hub service.
Authenticators can define normalize_username, which takes a username.
The default normalization is to cast names to lowercase

For simple mappings, a configurable dict Authenticator.username_map is used to turn one name into another:

c.Authenticator.username_map = {
 'service-name': 'localname'
}

Validating usernames

In most cases, there is a very limited set of acceptable usernames.
Authenticators can define validate_username(username),
which should return True for a valid username and False for an invalid one.
The primary effect this has is improving error messages during user creation.

The default behavior is to use configurable Authenticator.username_pattern,
which is a regular expression string for validation.

To only allow usernames that start with ‘w’:

c.Authenticator.username_pattern = r'w.*'

OAuth and other non-password logins

Some login mechanisms, such as OAuth [https://en.wikipedia.org/wiki/OAuth], don’t map onto username+password.
For these, you can override the login handlers.

You can see an example implementation of an Authenticator that uses GitHub OAuth [https://developer.github.com/v3/oauth/]
at OAuthenticator [https://github.com/jupyterhub/oauthenticator].

Writing a custom authenticator

If you are interested in writing a custom authenticator, you can read this tutorial [http://jupyterhub-tutorial.readthedocs.io/en/latest/authenticators.html].

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Spawners

A Spawner [https://github.com/jupyterhub/jupyterhub/blob/master/jupyterhub/spawner.py] starts each single-user notebook server.
The Spawner represents an abstract interface to a process,
and a custom Spawner needs to be able to take three actions:

	start the process

	poll whether the process is still running

	stop the process

Examples

Custom Spawners for JupyterHub can be found on the JupyterHub wiki [https://github.com/jupyterhub/jupyterhub/wiki/Spawners].
Some examples include:

	DockerSpawner [https://github.com/jupyterhub/dockerspawner] for spawning user servers in Docker containers
	dockerspawner.DockerSpawner for spawning identical Docker containers for
each users

	dockerspawner.SystemUserSpawner for spawning Docker containers with an
environment and home directory for each users

	both DockerSpawner and SystemUserSpawner also work with Docker Swarm for
launching containers on remote machines

	SudoSpawner [https://github.com/jupyterhub/sudospawner] enables JupyterHub to
run without being root, by spawning an intermediate process via sudo

	BatchSpawner [https://github.com/jupyterhub/batchspawner] for spawning remote
servers using batch systems

	RemoteSpawner [https://github.com/zonca/remotespawner] to spawn notebooks
and a remote server and tunnel the port via SSH

Spawner control methods

Spawner.start

Spawner.start should start the single-user server for a single user.
Information about the user can be retrieved from self.user,
an object encapsulating the user’s name, authentication, and server info.

When Spawner.start returns, it should have stored the IP and port
of the single-user server in self.user.server.

NOTE: When writing coroutines, never yield in between a database change and a commit.

Most Spawner.start functions will look similar to this example:

def start(self):
 self.user.server.ip = 'localhost' # or other host or IP address, as seen by the Hub
 self.user.server.port = 1234 # port selected somehow
 self.db.commit() # always commit before yield, if modifying db values
 yield self._actually_start_server_somehow()

When Spawner.start returns, the single-user server process should actually be running,
not just requested. JupyterHub can handle Spawner.start being very slow
(such as PBS-style batch queues, or instantiating whole AWS instances)
via relaxing the Spawner.start_timeout config value.

Spawner.poll

Spawner.poll should check if the spawner is still running.
It should return None if it is still running,
and an integer exit status, otherwise.

For the local process case, Spawner.poll uses os.kill(PID, 0)
to check if the local process is still running.

Spawner.stop

Spawner.stop should stop the process. It must be a tornado coroutine, which should return when the process has finished exiting.

Spawner state

JupyterHub should be able to stop and restart without tearing down
single-user notebook servers. To do this task, a Spawner may need to persist
some information that can be restored later.
A JSON-able dictionary of state can be used to store persisted information.

Unlike start, stop, and poll methods, the state methods must not be coroutines.

For the single-process case, the Spawner state is only the process ID of the server:

def get_state(self):
 """get the current state"""
 state = super().get_state()
 if self.pid:
 state['pid'] = self.pid
 return state

def load_state(self, state):
 """load state from the database"""
 super().load_state(state)
 if 'pid' in state:
 self.pid = state['pid']

def clear_state(self):
 """clear any state (called after shutdown)"""
 super().clear_state()
 self.pid = 0

Spawner options form

(new in 0.4)

Some deployments may want to offer options to users to influence how their servers are started.
This may include cluster-based deployments, where users specify what resources should be available,
or docker-based deployments where users can select from a list of base images.

This feature is enabled by setting Spawner.options_form, which is an HTML form snippet
inserted unmodified into the spawn form.
If the Spawner.options_form is defined, when a user tries to start their server, they will be directed to a form page, like this:

[image: spawn-form]

If Spawner.options_form is undefined, the user’s server is spawned directly, and no spawn page is rendered.

See this example [https://github.com/jupyterhub/jupyterhub/blob/master/examples/spawn-form/jupyterhub_config.py] for a form that allows custom CLI args for the local spawner.

Spawner.options_from_form

Options from this form will always be a dictionary of lists of strings, e.g.:

{
 'integer': ['5'],
 'text': ['some text'],
 'select': ['a', 'b'],
}

When formdata arrives, it is passed through Spawner.options_from_form(formdata),
which is a method to turn the form data into the correct structure.
This method must return a dictionary, and is meant to interpret the lists-of-strings into the correct types. For example, the options_from_form for the above form would look like:

def options_from_form(self, formdata):
 options = {}
 options['integer'] = int(formdata['integer'][0]) # single integer value
 options['text'] = formdata['text'][0] # single string value
 options['select'] = formdata['select'] # list already correct
 options['notinform'] = 'extra info' # not in the form at all
 return options

which would return:

{
 'integer': 5,
 'text': 'some text',
 'select': ['a', 'b'],
 'notinform': 'extra info',
}

When Spawner.start is called, this dictionary is accessible as self.user_options.

Writing a custom spawner

If you are interested in building a custom spawner, you can read this tutorial [http://jupyterhub-tutorial.readthedocs.io/en/latest/spawners.html].

Spawners, resource limits, and guarantees (Optional)

Some spawners of the single-user notebook servers allow setting limits or
guarantees on resources, such as CPU and memory. To provide a consistent
experience for sysadmins and users, we provide a standard way to set and
discover these resource limits and guarantees, such as for memory and CPU. For
the limits and guarantees to be useful, the spawner must implement support for
them.

Memory Limits & Guarantees

c.Spawner.mem_limit: A limit specifies the maximum amount of memory
that may be allocated, though there is no promise that the maximum amount will
be available. In supported spawners, you can set c.Spawner.mem_limit to
limit the total amount of memory that a single-user notebook server can
allocate. Attempting to use more memory than this limit will cause errors. The
single-user notebook server can discover its own memory limit by looking at
the environment variable MEM_LIMIT, which is specified in absolute bytes.

c.Spawner.mem_guarantee: Sometimes, a guarantee of a minumum amount of
memory is desirable. In this case, you can set c.Spawner.mem_guarantee to
to provide a guarantee that at minimum this much memory will always be
available for the single-user notebook server to use. The environment variable
MEM_GUARANTEE will also be set in the single-user notebook server.

The spawner’s underlying system or cluster is responsible for enforcing these
limits and providing these guarantees. If these values are set to None, no
limits or guarantees are provided, and no environment values are set.

CPU Limits & Guarantees

c.Spawner.cpu_limit: In supported spawners, you can set
c.Spawner.cpu_limit to limit the total number of cpu-cores that a
single-user notebook server can use. These can be fractional - 0.5 means 50%
of one CPU core, 4.0 is 4 cpu-cores, etc. This value is also set in the
single-user notebook server’s environment variable CPU_LIMIT. The limit does
not claim that you will be able to use all the CPU up to your limit as other
higher priority applications might be taking up CPU.

c.Spawner.cpu_guarantee: You can set c.Spawner.cpu_guarantee to provide a
guarantee for CPU usage. The environment variable CPU_GUARANTEE will be set
in the single-user notebook server when a guarantee is being provided.

The spawner’s underlying system or cluster is responsible for enforcing these
limits and providing these guarantees. If these values are set to None, no
limits or guarantees are provided, and no environment values are set.

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Services

With version 0.7, JupyterHub adds support for Services.

This section provides the following information about Services:

	Definition of a Service

	Properties of a Service

	Hub-Managed Services

	Launching a Hub-Managed Service

	Externally-Managed Services

	Writing your own Services

	Hub Authentication and Services

Definition of a Service

When working with JupyterHub, a Service is defined as a process that interacts
with the Hub’s REST API. A Service may perform a specific or
action or task. For example, the following tasks can each be a unique Service:

	shutting down individuals’ single user notebook servers that have been idle
for some time

	registering additional web servers which should use the Hub’s authentication
and be served behind the Hub’s proxy.

Two key features help define a Service:

	Is the Service managed by JupyterHub?

	Does the Service have a web server that should be added to the proxy’s
table?

Currently, these characteristics distinguish two types of Services:

	A Hub-Managed Service which is managed by JupyterHub

	An Externally-Managed Service which runs its own web server and
communicates operation instructions via the Hub’s API.

Properties of a Service

A Service may have the following properties:

	name: str - the name of the service

	admin: bool (default - false) - whether the service should have
administrative privileges

	url: str (default - None) - The URL where the service is/should be. If a
url is specified for where the Service runs its own web server,
the service will be added to the proxy at /services/:name

If a service is also to be managed by the Hub, it has a few extra options:

	command: (str/Popen list) - Command for JupyterHub to spawn the service.
- Only use this if the service should be a subprocess.
- If command is not specified, the Service is assumed to be managed
externally.
- If a command is specified for launching the Service, the Service will
be started and managed by the Hub.

	env: dict - environment variables to add to the current env

	user: str - the name of a system user to manage the Service. If
unspecified, run as the same user as the Hub.

Hub-Managed Services

A Hub-Managed Service is started by the Hub, and the Hub is responsible
for the Service’s actions. A Hub-Managed Service can only be a local
subprocess of the Hub. The Hub will take care of starting the process and
restarts it if it stops.

While Hub-Managed Services share some similarities with notebook Spawners,
there are no plans for Hub-Managed Services to support the same spawning
abstractions as a notebook Spawner.

If you wish to run a Service in a Docker container or other deployment
environments, the Service can be registered as an
Externally-Managed Service, as described below.

Launching a Hub-Managed Service

A Hub-Managed Service is characterized by its specified command for launching
the Service. For example, a ‘cull idle’ notebook server task configured as a
Hub-Managed Service would include:

	the Service name,

	admin permissions, and

	the command to launch the Service which will cull idle servers after a
timeout interval

This example would be configured as follows in jupyterhub_config.py:

c.JupyterHub.services = [
 {
 'name': 'cull-idle',
 'admin': True,
 'command': ['python', '/path/to/cull-idle.py', '--timeout']
 }
]

A Hub-Managed Service may also be configured with additional optional
parameters, which describe the environment needed to start the Service process:

	env: dict - additional environment variables for the Service.

	user: str - name of the user to run the server if different from the Hub.
Requires Hub to be root.

	cwd: path directory in which to run the Service, if different from the
Hub directory.

The Hub will pass the following environment variables to launch the Service:

JUPYTERHUB_SERVICE_NAME: The name of the service
JUPYTERHUB_API_TOKEN: API token assigned to the service
JUPYTERHUB_API_URL: URL for the JupyterHub API (default, http://127.0.0.1:8080/hub/api)
JUPYTERHUB_BASE_URL: Base URL of the Hub (https://mydomain[:port]/)
JUPYTERHUB_SERVICE_PREFIX: URL path prefix of this service (/services/:service-name/)
JUPYTERHUB_SERVICE_URL: Local URL where the service is expected to be listening.
 Only for proxied web services.

For the previous ‘cull idle’ Service example, these environment variables
would be passed to the Service when the Hub starts the ‘cull idle’ Service:

JUPYTERHUB_SERVICE_NAME: 'cull-idle'
JUPYTERHUB_API_TOKEN: API token assigned to the service
JUPYTERHUB_API_URL: http://127.0.0.1:8080/hub/api
JUPYTERHUB_BASE_URL: https://mydomain[:port]
JUPYTERHUB_SERVICE_PREFIX: /services/cull-idle/

See the JupyterHub GitHub repo for additional information about the
cull-idle example [https://github.com/jupyterhub/jupyterhub/tree/master/examples/cull-idle].

Externally-Managed Services

You may prefer to use your own service management tools, such as Docker or
systemd, to manage a JupyterHub Service. These Externally-Managed
Services, unlike Hub-Managed Services, are not subprocesses of the Hub. You
must tell JupyterHub which API token the Externally-Managed Service is using
to perform its API requests. Each Externally-Managed Service will need a
unique API token, because the Hub authenticates each API request and the API
token is used to identify the originating Service or user.

A configuration example of an Externally-Managed Service with admin access and
running its own web server is:

c.JupyterHub.services = [
 {
 'name': 'my-web-service',
 'url': 'https://10.0.1.1:1984',
 'api_token': 'super-secret',
 }
]

In this case, the url field will be passed along to the Service as
JUPYTERHUB_SERVICE_URL.

Writing your own Services

When writing your own services, you have a few decisions to make (in addition
to what your service does!):

	Does my service need a public URL?

	Do I want JupyterHub to start/stop the service?

	Does my service need to authenticate users?

When a Service is managed by JupyterHub, the Hub will pass the necessary
information to the Service via the environment variables described above. A
flexible Service, whether managed by the Hub or not, can make use of these
same environment variables.

When you run a service that has a url, it will be accessible under a
/services/ prefix, such as https://myhub.horse/services/my-service/. For
your service to route proxied requests properly, it must take
JUPYTERHUB_SERVICE_PREFIX into account when routing requests. For example, a
web service would normally service its root handler at '/', but the proxied
service would need to serve JUPYTERHUB_SERVICE_PREFIX + '/'.

Hub Authentication and Services

JupyterHub 0.7 introduces some utilities for using the Hub’s authentication
mechanism to govern access to your service. When a user logs into JupyterHub,
the Hub sets a cookie (jupyterhub-services). The service can use this
cookie to authenticate requests.

JupyterHub ships with a reference implementation of Hub authentication that
can be used by services. You may go beyond this reference implementation and
create custom hub-authenticating clients and services. We describe the process
below.

The reference, or base, implementation is the HubAuth class,
which implements the requests to the Hub.

To use HubAuth, you must set the .api_token, either programmatically when constructing the class,
or via the JUPYTERHUB_API_TOKEN environment variable.

Most of the logic for authentication implementation is found in the
HubAuth.user_for_cookie
method, which makes a request of the Hub, and returns:

	None, if no user could be identified, or

	a dict of the following form:

{
 "name": "username",
 "groups": ["list", "of", "groups"],
 "admin": False, # or True
}

You are then free to use the returned user information to take appropriate
action.

HubAuth also caches the Hub’s response for a number of seconds,
configurable by the cookie_cache_max_age setting (default: five minutes).

Flask Example

For example, you have a Flask service that returns information about a user.
JupyterHub’s HubAuth class can be used to authenticate requests to the Flask
service. See the service-whoami-flask example in the
JupyterHub GitHub repo [https://github.com/jupyterhub/jupyterhub/tree/master/examples/service-whoami-flask]
for more details.

from functools import wraps
import json
import os
from urllib.parse import quote

from flask import Flask, redirect, request, Response

from jupyterhub.services.auth import HubAuth

prefix = os.environ.get('JUPYTERHUB_SERVICE_PREFIX', '/')

auth = HubAuth(
 api_token=os.environ['JUPYTERHUB_API_TOKEN'],
 cookie_cache_max_age=60,
)

app = Flask(__name__)

def authenticated(f):
 """Decorator for authenticating with the Hub"""
 @wraps(f)
 def decorated(*args, **kwargs):
 cookie = request.cookies.get(auth.cookie_name)
 if cookie:
 user = auth.user_for_cookie(cookie)
 else:
 user = None
 if user:
 return f(user, *args, **kwargs)
 else:
 # redirect to login url on failed auth
 return redirect(auth.login_url + '?next=%s' % quote(request.path))
 return decorated

@app.route(prefix + '/')
@authenticated
def whoami(user):
 return Response(
 json.dumps(user, indent=1, sort_keys=True),
 mimetype='application/json',
)

Authenticating tornado services with JupyterHub

Since most Jupyter services are written with tornado,
we include a mixin class, HubAuthenticated,
for quickly authenticating your own tornado services with JupyterHub.

Tornado’s @web.authenticated method calls a Handler’s .get_current_user
method to identify the user. Mixing in HubAuthenticated defines
get_current_user to use HubAuth. If you want to configure the HubAuth
instance beyond the default, you’ll want to define an initialize method,
such as:

class MyHandler(HubAuthenticated, web.RequestHandler):
 hub_users = {'inara', 'mal'}

 def initialize(self, hub_auth):
 self.hub_auth = hub_auth

 @web.authenticated
 def get(self):
 ...

The HubAuth will automatically load the desired configuration from the Service
environment variables.

If you want to limit user access, you can whitelist users through either the
.hub_users attribute or .hub_groups. These are sets that check against the
username and user group list, respectively. If a user matches neither the user
list nor the group list, they will not be allowed access. If both are left
undefined, then any user will be allowed.

Implementing your own Authentication with JupyterHub

If you don’t want to use the reference implementation
(e.g. you find the implementation a poor fit for your Flask app),
you can implement authentication via the Hub yourself.
We recommend looking at the HubAuth class implementation for reference,
and taking note of the following process:

	retrieve the cookie jupyterhub-services from the request.

	Make an API request GET /hub/api/authorizations/cookie/jupyterhub-services/cookie-value,
where cookie-value is the url-encoded value of the jupyterhub-services cookie.
This request must be authenticated with a Hub API token in the Authorization header.
For example, with requests [http://docs.python-requests.org/en/master/]:

r = requests.get(
 '/'.join((["http://127.0.0.1:8081/hub/api",
 "authorizations/cookie/jupyterhub-services",
 quote(encrypted_cookie, safe=''),
]),
 headers = {
 'Authorization' : 'token %s' % api_token,
 },
)
r.raise_for_status()
user = r.json()

	On success, the reply will be a JSON model describing the user:

{
 "name": "inara",
 "groups": ["serenity", "guild"],

}

An example of using an Externally-Managed Service and authentication is
nbviewer [https://github.com/jupyter/nbviewer#securing-the-notebook-viewer],
and an example of its configuration is found here [https://github.com/jupyter/nbviewer/blob/master/nbviewer/providers/base.py#L94].
nbviewer can also be run as a Hub-Managed Service as described here [https://github.com/jupyter/nbviewer#securing-the-notebook-viewer].

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Configuration examples

This section provides configuration files and tips for the following
configurations:

	Example with GitHub OAuth

	Example with nginx reverse proxy

Example with GitHub OAuth

In the following example, we show a configuration files for a fairly standard JupyterHub deployment with the following assumptions:

	JupyterHub is running on a single cloud server

	Using SSL on the standard HTTPS port 443

	You want to use GitHub OAuth (using oauthenticator) for login

	You need the users to exist locally on the server

	You want users’ notebooks to be served from ~/assignments to allow users to browse for notebooks within
other users home directories

	You want the landing page for each user to be a Welcome.ipynb notebook in their assignments directory.

	All runtime files are put into /srv/jupyterhub and log files in /var/log.

Let’s start out with jupyterhub_config.py:

jupyterhub_config.py
c = get_config()

import os
pjoin = os.path.join

runtime_dir = os.path.join('/srv/jupyterhub')
ssl_dir = pjoin(runtime_dir, 'ssl')
if not os.path.exists(ssl_dir):
 os.makedirs(ssl_dir)

https on :443
c.JupyterHub.port = 443
c.JupyterHub.ssl_key = pjoin(ssl_dir, 'ssl.key')
c.JupyterHub.ssl_cert = pjoin(ssl_dir, 'ssl.cert')

put the JupyterHub cookie secret and state db
in /var/run/jupyterhub
c.JupyterHub.cookie_secret_file = pjoin(runtime_dir, 'cookie_secret')
c.JupyterHub.db_url = pjoin(runtime_dir, 'jupyterhub.sqlite')
or `--db=/path/to/jupyterhub.sqlite` on the command-line

put the log file in /var/log
c.JupyterHub.extra_log_file = '/var/log/jupyterhub.log'

use GitHub OAuthenticator for local users

c.JupyterHub.authenticator_class = 'oauthenticator.LocalGitHubOAuthenticator'
c.GitHubOAuthenticator.oauth_callback_url = os.environ['OAUTH_CALLBACK_URL']
create system users that don't exist yet
c.LocalAuthenticator.create_system_users = True

specify users and admin
c.Authenticator.whitelist = {'rgbkrk', 'minrk', 'jhamrick'}
c.Authenticator.admin_users = {'jhamrick', 'rgbkrk'}

start single-user notebook servers in ~/assignments,
with ~/assignments/Welcome.ipynb as the default landing page
this config could also be put in
/etc/ipython/ipython_notebook_config.py
c.Spawner.notebook_dir = '~/assignments'
c.Spawner.args = ['--NotebookApp.default_url=/notebooks/Welcome.ipynb']

Using the GitHub Authenticator [requires a few additional env variables][oauth-setup],
which we will need to set when we launch the server:

export GITHUB_CLIENT_ID=github_id
export GITHUB_CLIENT_SECRET=github_secret
export OAUTH_CALLBACK_URL=https://example.com/hub/oauth_callback
export CONFIGPROXY_AUTH_TOKEN=super-secret
jupyterhub -f /path/to/aboveconfig.py

Example with nginx reverse proxy

In the following example, we show configuration files for a JupyterHub server running locally on port 8000 but accessible from the outside on the standard SSL port 443. This could be useful if the JupyterHub server machine is also hosting other domains or content on 443. The goal here is to have the following be true:

	JupyterHub is running on a server, accessed only via HUB.DOMAIN.TLD:443

	On the same machine, NO_HUB.DOMAIN.TLD strictly serves different content, also on port 443

	nginx is used to manage the web servers / reverse proxy (which means that only nginx will be able to bind two servers to 443)

	After testing, the server in question should be able to score an A+ on the Qualys SSL Labs SSL Server Test [https://www.ssllabs.com/ssltest/]

Let’s start out with jupyterhub_config.py:

Force the proxy to only listen to connections to 127.0.0.1
c.JupyterHub.ip = '127.0.0.1'

The nginx server config files are fairly standard fare except for the two location blocks within the HUB.DOMAIN.TLD config file:

HTTP server to redirect all 80 traffic to SSL/HTTPS
server {
 listen 80;
 server_name HUB.DOMAIN.TLD;

 # Tell all requests to port 80 to be 302 redirected to HTTPS
 return 302 https://$host$request_uri;
}

HTTPS server to handle JupyterHub
server {
 listen 443;
 ssl on;

 server_name HUB.DOMAIN.TLD;

 ssl_certificate /etc/letsencrypt/live/HUB.DOMAIN.TLD/fullchain.pem
 ssl_certificate_key /etc/letsencrypt/live/HUB.DOMAIN.TLD/privkey.pem

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_dhparam /etc/ssl/certs/dhparam.pem;
 ssl_ciphers 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:AES:CAMELLIA:DES-CBC3-SHA:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK:!aECDH:!EDH-DSS-DES-CBC3-SHA:!EDH-RSA-DES-CBC3-SHA:!KRB5-DES-CBC3-SHA';
 ssl_session_timeout 1d;
 ssl_session_cache shared:SSL:50m;
 ssl_stapling on;
 ssl_stapling_verify on;
 add_header Strict-Transport-Security max-age=15768000;

 # Managing literal requests to the JupyterHub front end
 location / {
 proxy_pass https://127.0.0.1:8000;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 # Managing WebHook/Socket requests between hub user servers and external proxy
 location ~* /(api/kernels/[^/]+/(channels|iopub|shell|stdin)|terminals/websocket)/? {
 proxy_pass https://127.0.0.1:8000;

 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 # WebSocket support
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $connection_upgrade;

 }

 # Managing requests to verify letsencrypt host
 location ~ /.well-known {
 allow all;
 }

}

nginx will now be the front facing element of JupyterHub on 443 which means it is also free to bind other servers, like NO_HUB.DOMAIN.TLD to the same port on the same machine and network interface. In fact, one can simply use the same server blocks as above for NO_HUB and simply add line for the root directory of the site as well as the applicable location call:

server {
 listen 80;
 server_name NO_HUB.DOMAIN.TLD;

 # Tell all requests to port 80 to be 302 redirected to HTTPS
 return 302 https://$host$request_uri;
}

server {
 listen 443;
 ssl on;

 # INSERT OTHER SSL PARAMETERS HERE AS ABOVE

 # Set the appropriate root directory
 root /var/www/html

 # Set URI handling
 location / {
 try_files $uri $uri/ =404;
 }

 # Managing requests to verify letsencrypt host
 location ~ /.well-known {
 allow all;
 }

}

Now just restart nginx, restart the JupyterHub, and enjoy accessing https://HUB.DOMAIN.TLD while serving other content securely on https://NO_HUB.DOMAIN.TLD.

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Upgrading JupyterHub and its database

From time to time, you may wish to upgrade JupyterHub to take advantage
of new releases. Much of this process is automated using scripts,
such as those generated by alembic for database upgrades. Before upgrading a
JupyterHub deployment, it’s critical to backup your data and configurations
before shutting down the JupyterHub process and server.

Databases: SQLite (default) or RDBMS (PostgreSQL, MySQL)

The default database for JupyterHub is a SQLite [https://sqlite.org] database.
We have chosen SQLite as JupyterHub’s default for its lightweight simplicity
in certain uses such as testing, small deployments and workshops.

When running a long term deployment or a production system, we recommend using
a traditional RDBMS database, such as PostgreSQL [https://www.postgresql.org]
or MySQL [https://www.mysql.com], that supports the SQL ALTER TABLE
statement.

For production systems, SQLite has some disadvantages when used with JupyterHub:

	upgrade-db may not work, and you may need to start with a fresh database

	downgrade-db will not work if you want to rollback to an earlier
version, so backup the jupyterhub.sqlite file before upgrading

The sqlite documentation provides a helpful page about when to use sqlite and
where traditional RDBMS may be a better choice [https://sqlite.org/whentouse.html].

The upgrade process

Four fundamental process steps are needed when upgrading JupyterHub and its
database:

	Backup JupyterHub database

	Backup JupyterHub configuration file

	Shutdown the Hub

	Upgrade JupyterHub

	Upgrade the database using run jupyterhub upgrade-db

Let’s take a closer look at each step in the upgrade process as well as some
additional information about JupyterHub databases.

Backup JupyterHub database

To prevent unintended loss of data or configuration information, you should
back up the JupyterHub database (the default SQLite database or a RDBMS
database using PostgreSQL, MySQL, or others supported by SQLAlchemy):

	If using the default SQLite database, back up the jupyterhub.sqlite
database.

	If using an RDBMS database such as PostgreSQL, MySQL, or other supported by
SQLAlchemy, back up the JupyterHub database.

Losing the Hub database is often not a big deal. Information that resides only
in the Hub database includes:

	active login tokens (user cookies, service tokens)

	users added via GitHub UI, instead of config files

	info about running servers

If the following conditions are true, you should be fine clearing the Hub
database and starting over:

	users specified in config file

	user servers are stopped during upgrade

	don’t mind causing users to login again after upgrade

Backup JupyterHub configuration file

Additionally, backing up your configuration file, jupyterhub_config.py, to
a secure location.

Shutdown JupyterHub

Prior to shutting down JupyterHub, you should notify the Hub users of the
scheduled downtime. This gives users the opportunity to finish any outstanding
work in process.

Next, shutdown the JupyterHub service.

Upgrade JupyterHub

Follow directions that correspond to your package manager, pip or conda,
for the new JupyterHub release. These directions will guide you to the
specific command. In general, pip install -U jupyterhub or
conda upgrade jupyterhub

Upgrade JupyterHub databases

To run the upgrade process for JupyterHub databases, enter:

jupyterhub upgrade-db

Upgrade checklist

	Backup JupyterHub database:
	jupyterhub.sqlite when using the default sqlite database

	Your JupyterHub database when using an RDBMS

	Backup JupyterHub configuration file: jupyterhub_config.py

	Shutdown the Hub

	Upgrade JupyterHub
	pip install -U jupyterhub when using pip

	conda upgrade jupyterhub when using conda

	Upgrade the database using run jupyterhub upgrade-db

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Troubleshooting

When troubleshooting, you may see unexpected behaviors or receive an error
message. This section provide links for identifying the cause of the
problem and how to resolve it.

Behavior

	JupyterHub proxy fails to start

	sudospawner fails to run

Errors

	500 error after spawning my single-user server

How do I...?

	Use a chained SSL certificate

	Install JupyterHub without a network connection

	I want access to the whole filesystem, but still default users to their home directory

	How do I increase the number of pySpark executors on YARN?

	How do I use JupyterLab’s prerelease version with JupyterHub?

	How do I set up JupyterHub for a workshop (when users are not known ahead of time)?

Troubleshooting commands

Behavior

JupyterHub proxy fails to start

If you have tried to start the JupyterHub proxy and it fails to start:

	check if the JupyterHub IP configuration setting is
c.JupyterHub.ip = '*'; if it is, try c.JupyterHub.ip = ''

	Try starting with jupyterhub --ip=0.0.0.0

sudospawner fails to run

If the sudospawner script is not found in the path, sudospawner will not run.
To avoid this, specify sudospawner’s absolute path. For example, start
jupyterhub with:

jupyterhub --SudoSpawner.sudospawner_path='/absolute/path/to/sudospawner'

or add:

c.SudoSpawner.sudospawner_path = '/absolute/path/to/sudospawner'

to the config file, jupyterhub_config.py.

Errors

500 error after spawning my single-user server

You receive a 500 error when accessing the URL /user/<your_name>/....
This is often seen when your single-user server cannot verify your user cookie
with the Hub.

There are two likely reasons for this:

	The single-user server cannot connect to the Hub’s API (networking
configuration problems)

	The single-user server cannot authenticate its requests (invalid token)

Symptoms

The main symptom is a failure to load any page served by the single-user
server, met with a 500 error. This is typically the first page at /user/<your_name>
after logging in or clicking “Start my server”. When a single-user notebook server
receives a request, the notebook server makes an API request to the Hub to
check if the cookie corresponds to the right user. This request is logged.

If everything is working, the response logged will be similar to this:

200 GET /hub/api/authorizations/cookie/jupyter-hub-token-name/[secret] (@10.0.1.4) 6.10ms

You should see a similar 200 message, as above, in the Hub log when you first
visit your single-user notebook server. If you don’t see this message in the log, it
may mean that your single-user notebook server isn’t connecting to your Hub.

If you see 403 (forbidden) like this, it’s a token problem:

403 GET /hub/api/authorizations/cookie/jupyter-hub-token-name/[secret] (@10.0.1.4) 4.14ms

Check the logs of the single-user notebook server, which may have more detailed
information on the cause.

Causes and resolutions

No authorization request

If you make an API request and it is not received by the server, you likely
have a network configuration issue. Often, this happens when the Hub is only
listening on 127.0.0.1 (default) and the single-user servers are not on the
same ‘machine’ (can be physically remote, or in a docker container or VM). The
fix for this case is to make sure that c.JupyterHub.hub_ip is an address
that all single-user servers can connect to, e.g.:

c.JupyterHub.hub_ip = '10.0.0.1'

403 GET /hub/api/authorizations/cookie

If you receive a 403 error, the API token for the single-user server is likely
invalid. Commonly, the 403 error is caused by resetting the JupyterHub
database (either removing jupyterhub.sqlite or some other action) while
leaving single-user servers running. This happens most frequently when using
DockerSpawner, because Docker’s default behavior is to stop/start containers
which resets the JupyterHub database, rather than destroying and recreating
the container every time. This means that the same API token is used by the
server for its whole life, until the container is rebuilt.

The fix for this Docker case is to remove any Docker containers seeing this
issue (typically all containers created before a certain point in time):

docker rm -f jupyter-name

After this, when you start your server via JupyterHub, it will build a
new container. If this was the underlying cause of the issue, you should see
your server again.

How do I...?

Use a chained SSL certificate

Some certificate providers, i.e. Entrust, may provide you with a chained
certificate that contains multiple files. If you are using a chained
certificate you will need to concatenate the individual files by appending the
chain cert and root cert to your host cert:

cat your_host.crt chain.crt root.crt > your_host-chained.crt

You would then set in your jupyterhub_config.py file the ssl_key and
ssl_cert as follows:

c.JupyterHub.ssl_cert = your_host-chained.crt
c.JupyterHub.ssl_key = your_host.key

Example

Your certificate provider gives you the following files: example_host.crt,
Entrust_L1Kroot.txt and Entrust_Root.txt.

Concatenate the files appending the chain cert and root cert to your host cert:

cat example_host.crt Entrust_L1Kroot.txt Entrust_Root.txt > example_host-chained.crt

You would then use the example_host-chained.crt as the value for
JupyterHub’s ssl_cert. You may pass this value as a command line option
when starting JupyterHub or more conveniently set the ssl_cert variable in
JupyterHub’s configuration file, jupyterhub_config.py. In jupyterhub_config.py,
set:

c.JupyterHub.ssl_cert = /path/to/example_host-chained.crt
c.JupyterHub.ssl_key = /path/to/example_host.key

where ssl_cert is example-chained.crt and ssl_key to your private key.

Then restart JupyterHub.

See also JupyterHub SSL encryption.

Install JupyterHub without a network connection

Both conda and pip can be used without a network connection. You can make your
own repository (directory) of conda packages and/or wheels, and then install
from there instead of the internet.

For instance, you can install JupyterHub with pip and configurable-http-proxy
with npmbox:

pip wheel jupyterhub
npmbox configurable-http-proxy

I want access to the whole filesystem, but still default users to their home directory

Setting the following in jupyterhub_config.py will configure access to
the entire filesystem and set the default to the user’s home directory.

c.Spawner.notebook_dir = '/'
c.Spawner.default_url = '/home/%U' # %U will be replaced with the username

How do I increase the number of pySpark executors on YARN?

From the command line, pySpark executors can be configured using a command
similar to this one:

pyspark --total-executor-cores 2 --executor-memory 1G

Cloudera documentation for configuring spark on YARN applications [https://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#spark_on_yarn_config_apps]
provides additional information. The pySpark configuration documentation [https://spark.apache.org/docs/0.9.0/configuration.html]
is also helpful for programmatic configuration examples.

How do I use JupyterLab’s prerelease version with JupyterHub?

While JupyterLab is still under active development, we have had users
ask about how to try out JupyterLab with JupyterHub.

You need to install and enable the JupyterLab extension system-wide,
then you can change the default URL to /lab.

For instance:

pip install jupyterlab
jupyter serverextension enable --py jupyterlab --sys-prefix

The important thing is that jupyterlab is installed and enabled in the
single-user notebook server environment. For system users, this means
system-wide, as indicated above. For Docker containers, it means inside
the single-user docker image, etc.

In jupyterhub_config.py, configure the Spawner to tell the single-user
notebook servers to default to JupyterLab:

c.Spawner.default_url = '/lab'

How do I set up JupyterHub for a workshop (when users are not known ahead of time)?

	Set up JupyterHub using OAuthenticator for GitHub authentication

	Configure whitelist to be an empty list injupyterhub_config.py

	Configure admin list to have workshop leaders be listed with administrator privileges.

Users will need a GitHub account to login and be authenticated by the Hub.

Troubleshooting commands

The following commands provide additional detail about installed packages,
versions, and system information that may be helpful when troubleshooting
a JupyterHub deployment. The commands are:

	System and deployment information

jupyter troubleshooting

	Kernel information

jupyter kernelspec list

	Debug logs when running JupyterHub

jupyterhub --debug

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

The JupyterHub API

	Release:	0.7.0

	Date:	Dec 02, 2016

JupyterHub also provides a REST API for administration of the Hub and users.
The documentation on Using JupyterHub’s REST API provides
information on:

	Creating an API token

	Adding tokens to the configuration file (optional)

	Making an API request

The same JupyterHub API spec, as found here, is available in an interactive form
here (on swagger’s petstore) [http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyterhub/jupyterhub/master/docs/rest-api.yml#!/default].
The OpenAPI Initiative [https://www.openapis.org/] (fka Swagger™) is a project used to describe
and document RESTful APIs.

JupyterHub API Reference:

	Authenticators
	Module: jupyterhub.auth

	Spawners
	Module: jupyterhub.spawner
	Spawner

	Users
	Module: jupyterhub.user
	User

	Authenticating Services
	Module: jupyterhub.services.auth

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

 	The JupyterHub API »

Authenticators

Module: jupyterhub.auth

Base Authenticator class and the default PAM Authenticator

	
class jupyterhub.auth.Authenticator(**kwargs)

	Base class for implementing an authentication provider for JupyterHub

	
add_user(user)

	Hook called when a user is added to JupyterHub

	This is called:

	
	When a user first authenticates

	When the hub restarts, for all users.

This method may be a coroutine.

By default, this just adds the user to the whitelist.

Subclasses may do more extensive things, such as adding actual unix users,
but they should call super to ensure the whitelist is updated.

Note that this should be idempotent, since it is called whenever the hub restarts
for all users.

	Parameters:	user (User) – The User wrapper object

	
authenticate(handler, data)

	Authenticate a user with login form data

This must be a tornado gen.coroutine.
It must return the username on successful authentication,
and return None on failed authentication.

Checking the whitelist is handled separately by the caller.

	Parameters:	
	handler (tornado.web.RequestHandler) – the current request handler

	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The formdata of the login form.
The default form has ‘username’ and ‘password’ fields.

	Returns:	username – The username of the authenticated user,
or None if Authentication failed

	Return type:	str or None

	
check_whitelist(username)

	Check if a username is allowed to authenticate based on whitelist configuration

Return True if username is allowed, False otherwise.
No whitelist means any username is allowed.

Names are normalized before being checked against the whitelist.

	
delete_user(user)

	Hook called when a user is deleted

Removes the user from the whitelist.
Subclasses should call super to ensure the whitelist is updated.

	Parameters:	user (User) – The User wrapper object

	
get_authenticated_user(handler, data)

	Authenticate the user who is attempting to log in

Returns normalized username if successful, None otherwise.

This calls authenticate, which should be overridden in subclasses,
normalizes the username if any normalization should be done,
and then validates the name in the whitelist.

This is the outer API for authenticating a user.
Subclasses should not need to override this method.

	The various stages can be overridden separately:

	
	authenticate turns formdata into a username

	normalize_username normalizes the username

	check_whitelist checks against the user whitelist

	
get_handlers(app)

	Return any custom handlers the authenticator needs to register

Used in conjugation with login_url and logout_url.

	Parameters:	app (JupyterHub Application) – the application object, in case it needs to be accessed for info.

	Returns:	handlers – list of ('/url', Handler) tuples passed to tornado.
The Hub prefix is added to any URLs.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	
login_url(base_url)

	Override this when registering a custom login handler

Generally used by authenticators that do not use simple form based authentication.

The subclass overriding this is responsible for making sure there is a handler
available to handle the URL returned from this method, using the get_handlers
method.

	Parameters:	base_url (str [https://docs.python.org/2/library/functions.html#str]) – the base URL of the Hub (e.g. /hub/)

	Returns:	The login URL, e.g. ‘/hub/login’

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
logout_url(base_url)

	Override when registering a custom logout handler

The subclass overriding this is responsible for making sure there is a handler
available to handle the URL returned from this method, using the get_handlers
method.

	Parameters:	base_url (str [https://docs.python.org/2/library/functions.html#str]) – the base URL of the Hub (e.g. /hub/)

	Returns:	The logout URL, e.g. ‘/hub/logout’

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
normalize_username(username)

	Normalize the given username and return it

Override in subclasses if usernames need different normalization rules.

The default attempts to lowercase the username and apply username_map if it is
set.

	
post_spawn_stop(user, spawner)

	Hook called after stopping a user container

Can be used to do auth-related cleanup, e.g. closing PAM sessions.

	
pre_spawn_start(user, spawner)

	Hook called before spawning a user’s server

Can be used to do auth-related startup, e.g. opening PAM sessions.

	
validate_username(username)

	Validate a normalized username

Return True if username is valid, False otherwise.

	
class jupyterhub.auth.LocalAuthenticator(**kwargs)

	Base class for Authenticators that work with local Linux/UNIX users

Checks for local users, and can attempt to create them if they exist.

	
add_system_user(user)

	Create a new local UNIX user on the system.

Tested to work on FreeBSD and Linux, at least.

	
add_user(user)

	Hook called whenever a new user is added

If self.create_system_users, the user will attempt to be created if it doesn’t exist.

	
check_group_whitelist(username)

	If group_whitelist is configured, check if authenticating user is part of group.

	
static system_user_exists(user)

	Check if the user exists on the system

	
class jupyterhub.auth.PAMAuthenticator(**kwargs)

	Authenticate local UNIX users with PAM

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

 	The JupyterHub API »

Spawners

Module: jupyterhub.spawner

Contains base Spawner class & default implementation

Spawner

	
class jupyterhub.spawner.Spawner(**kwargs)

	Base class for spawning single-user notebook servers.

Subclass this, and override the following methods:

	load_state

	get_state

	start

	stop

	poll

As JupyterHub supports multiple users, an instance of the Spawner subclass
is created for each user. If there are 20 JupyterHub users, there will be 20
instances of the subclass.

	
format_string(s)

	Render a Python format string

Uses Spawner.template_namespace() to populate format namespace.

	Parameters:	s (str [https://docs.python.org/2/library/functions.html#str]) – Python format-string to be formatted.

	Returns:	Formatted string, rendered

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
get_args()

	Return the arguments to be passed after self.cmd

Doesn’t expect shell expansion to happen.

	
get_env()

	Return the environment dict to use for the Spawner.

This applies things like env_keep, anything defined in Spawner.environment,
and adds the API token to the env.

When overriding in subclasses, subclasses must call super().get_env(), extend the
returned dict and return it.

Use this to access the env in Spawner.start to allow extension in subclasses.

	
get_state()

	Save state of spawner into database.

A black box of extra state for custom spawners. The returned value of this is
passed to load_state.

Subclasses should call super().get_state(), augment the state returned from
there, and return that state.

	Returns:	state – a JSONable dict of state

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
options_from_form(form_data)

	Interpret HTTP form data

Form data will always arrive as a dict of lists of strings.
Override this function to understand single-values, numbers, etc.

This should coerce form data into the structure expected by self.user_options,
which must be a dict.

Instances will receive this data on self.user_options, after passing through this function,
prior to Spawner.start.

	
poll()

	Check if the single-user process is running

	Returns:	None if single-user process is running.
Integer exit status (0 if unknown), if it is not running.

State transitions, behavior, and return response:

	If the Spawner has not been initialized (neither loaded state, nor called start),
it should behave as if it is not running (status=0).

	If the Spawner has not finished starting,
it should behave as if it is running (status=None).

Design assumptions about when poll may be called:

	On Hub launch: poll may be called before start when state is loaded on Hub launch.
poll should return exit status 0 (unknown) if the Spawner has not been initialized via
load_state or start.

	If .start() is async: poll may be called during any yielded portions of the start
process. poll should return None when start is yielded, indicating that the start
process has not yet completed.

	
start()

	Start the single-user server

	Returns:	the (ip, port) where the Hub can connect to the server.

	Return type:	(str, int)

Changed in version 0.7: Return ip, port instead of setting on self.user.server directly.

	
stop(now=False)

	Stop the single-user server

If now is set to False, do not wait for the server to stop. Otherwise, wait for
the server to stop before returning.

Must be a Tornado coroutine.

	
template_namespace()

	Return the template namespace for format-string formatting.

Currently used on default_url and notebook_dir.

Subclasses may add items to the available namespace.

The default implementation includes:

{
 'username': user.name,
 'base_url': users_base_url,
}

	Returns:	ns – namespace for string formatting.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
class jupyterhub.spawner.LocalProcessSpawner(**kwargs)

	A Spawner that uses subprocess.Popen to start single-user servers as local processes.

Requires local UNIX users matching the authenticated users to exist.
Does not work on Windows.

This is the default spawner for JupyterHub.

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

 	The JupyterHub API »

Users

Module: jupyterhub.user

User

	
class jupyterhub.user.Server

	

	
class jupyterhub.user.User(orm_user, settings, **kwargs)

	
	
name

	The user’s name

	
server

	The user’s Server data object if running, None otherwise.
Has ip, port attributes.

	
spawner

	The user’s Spawner instance.

	
escaped_name

	My name, escaped for use in URLs, cookies, etc.

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

 	The JupyterHub API »

Authenticating Services

Module: jupyterhub.services.auth

Authenticating services with JupyterHub

Cookies are sent to the Hub for verification, replying with a JSON model describing the authenticated user.

HubAuth can be used in any application, even outside tornado.

HubAuthenticated is a mixin class for tornado handlers that should authenticate with the Hub.

	
class jupyterhub.services.auth.HubAuth(**kwargs)

	A class for authenticating with JupyterHub

This can be used by any application.

If using tornado, use via HubAuthenticated mixin.
If using manually, use the .user_for_cookie(cookie_value) method
to identify the user corresponding to a given cookie value.

The following config must be set:

	api_token (token for authenticating with JupyterHub API),
fetched from the JUPYTERHUB_API_TOKEN env by default.

The following config MAY be set:

	api_url: the base URL of the Hub’s internal API,
fetched from JUPYTERHUB_API_URL by default.

	cookie_cache_max_age: the number of seconds responses
from the Hub should be cached.

	login_url (the public /hub/login URL of the Hub).

	cookie_name: the name of the cookie I should be using,
if different from the default (unlikely).

	
get_user(handler)

	Get the Hub user for a given tornado handler.

Checks cookie with the Hub to identify the current user.

	Parameters:	handler (tornado.web.RequestHandler) – the current request handler

	Returns:	user_model – The user model, if a user is identified, None if authentication fails.The ‘name’ field contains the user’s name.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
user_for_cookie(encrypted_cookie, use_cache=True)

	Ask the Hub to identify the user for a given cookie.

	Parameters:	
	encrypted_cookie (str [https://docs.python.org/2/library/functions.html#str]) – the cookie value (not decrypted, the Hub will do that)

	use_cache (bool [https://docs.python.org/2/library/functions.html#bool]) – Specify use_cache=False to skip cached cookie values (default: True)

	Returns:	user_model – The user model, if a user is identified, None if authentication fails.

The ‘name’ field contains the user’s name.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
class jupyterhub.services.auth.HubAuthenticated

	Mixin for tornado handlers that are authenticated with JupyterHub

A handler that mixes this in must have the following attributes/properties:

	.hub_auth: A HubAuth instance

	.hub_users: A set of usernames to allow.
If left unspecified or None, username will not be checked.

	.hub_groups: A set of group names to allow.
If left unspecified or None, groups will not be checked.

Examples:

class MyHandler(HubAuthenticated, web.RequestHandler):
 hub_users = {'inara', 'mal'}

 def initialize(self, hub_auth):
 self.hub_auth = hub_auth

 @web.authenticated
 def get(self):
 ...

	
check_hub_user(user_model)

	Check whether Hub-authenticated user should be allowed.

Returns the input if the user should be allowed, None otherwise.

Override if you want to check anything other than the username’s presence in hub_users list.

	Parameters:	user_model (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the user model returned from HubAuth

	Returns:	user_model – The user model if the user should be allowed, None otherwise.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
get_current_user()

	Tornado’s authentication method

	Returns:	user_model – The user model, if a user is identified, None if authentication fails.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Change log summary

For detailed changes from the prior release, click on the version number, and
its link will bring up a GitHub listing of changes. Use git log on the
command line for details.

Unreleased [https://github.com/jupyterhub/jupyterhub/compare/0.7.0...HEAD] 0.8

0.7

[0.7.0] - 2016-12-2

Added

	Implement Services API #705 [https://github.com/jupyterhub/jupyterhub/pull/705]

	Add /api/ and /api/info endpoints #675 [https://github.com/jupyterhub/jupyterhub/pull/675]

	Add documentation for JupyterLab, pySpark configuration, troubleshooting,
and more.

	Add logging of error if adding users already in database. #689 [https://github.com/jupyterhub/jupyterhub/pull/689]

	Add HubAuth class for authenticating with JupyterHub. This class can
be used by any application, even outside tornado.

	Add user groups.

	Add /hub/user-redirect/... URL for redirecting users to a file on their own server.

Changed

	Always install with setuptools but not eggs (effectively require
pip install .) #722 [https://github.com/jupyterhub/jupyterhub/pull/722]

	Updated formatting of changelog. #711 [https://github.com/jupyterhub/jupyterhub/pull/711]

	Single-user server is provided by JupyterHub package, so single-user servers depend on JupyterHub now.

Fixed

	Fix docker repository location #719 [https://github.com/jupyterhub/jupyterhub/pull/719]

	Fix swagger spec conformance and timestamp type in API spec

	Various redirect-loop-causing bugs have been fixed.

Removed

	Deprecate --no-ssl command line option. It has no meaning and warns if
used. #789 [https://github.com/jupyterhub/jupyterhub/pull/789]

	Deprecate %U username substitution in favor of {username}. #748 [https://github.com/jupyterhub/jupyterhub/pull/748]

	Removed deprecated SwarmSpawner link. #699 [https://github.com/jupyterhub/jupyterhub/pull/699]

0.6

0.6.1 [https://github.com/jupyterhub/jupyterhub/compare/0.6.0...0.6.1] - 2016-05-04

Bugfixes on 0.6:

	statsd is an optional dependency, only needed if in use

	Notice more quickly when servers have crashed

	Better error pages for proxy errors

	Add Stop All button to admin panel for stopping all servers at once

0.6.0 [https://github.com/jupyterhub/jupyterhub/compare/0.5.0...0.6.0] - 2016-04-25

	JupyterHub has moved to a new jupyterhub namespace on GitHub and Docker. What was juptyer/jupyterhub is now jupyterhub/jupyterhub, etc.

	jupyterhub/jupyterhub image on DockerHub no longer loads the jupyterhub_config.py in an ONBUILD step. A new jupyterhub/jupyterhub-onbuild image does this

	Add statsd support, via c.JupyterHub.statsd_{host,port,prefix}

	Update to traitlets 4.1 @default, @observe APIs for traits

	Allow disabling PAM sessions via c.PAMAuthenticator.open_sessions = False. This may be needed on SELinux-enabled systems, where our PAM session logic often does not work properly

	Add Spawner.environment configurable, for defining extra environment variables to load for single-user servers

	JupyterHub API tokens can be pregenerated and loaded via JupyterHub.api_tokens, a dict of token: username.

	JupyterHub API tokens can be requested via the REST API, with a POST request to /api/authorizations/token.
This can only be used if the Authenticator has a username and password.

	Various fixes for user URLs and redirects

0.5 [https://github.com/jupyterhub/jupyterhub/compare/0.4.1...0.5.0] - 2016-03-07

	Single-user server must be run with Jupyter Notebook ≥ 4.0

	Require --no-ssl confirmation to allow the Hub to be run without SSL (e.g. behind SSL termination in nginx)

	Add lengths to text fields for MySQL support

	Add Spawner.disable_user_config for preventing user-owned configuration from modifying single-user servers.

	Fixes for MySQL support.

	Add ability to run each user’s server on its own subdomain. Requires wildcard DNS and wildcard SSL to be feasible. Enable subdomains by setting JupyterHub.subdomain_host = 'https://jupyterhub.domain.tld[:port]'.

	Use 127.0.0.1 for local communication instead of localhost, avoiding issues with DNS on some systems.

	Fix race that could add users to proxy prematurely if spawning is slow.

0.4

0.4.1 [https://github.com/jupyterhub/jupyterhub/compare/0.4.0...0.4.1] - 2016-02-03

Fix removal of /login page in 0.4.0, breaking some OAuth providers.

0.4.0 [https://github.com/jupyterhub/jupyterhub/compare/0.3.0...0.4.0] - 2016-02-01

	Add Spawner.user_options_form for specifying an HTML form to present to users,
allowing users to influence the spawning of their own servers.

	Add Authenticator.pre_spawn_start and Authenticator.post_spawn_stop hooks,
so that Authenticators can do setup or teardown (e.g. passing credentials to Spawner,
mounting data sources, etc.).
These methods are typically used with custom Authenticator+Spawner pairs.

	0.4 will be the last JupyterHub release where single-user servers running IPython 3 is supported instead of Notebook ≥ 4.0.

0.3 [https://github.com/jupyterhub/jupyterhub/compare/0.2.0...0.3.0] - 2015-11-04

	No longer make the user starting the Hub an admin

	start PAM sessions on login

	hooks for Authenticators to fire before spawners start and after they stop,
allowing deeper interaction between Spawner/Authenticator pairs.

	login redirect fixes

0.2 [https://github.com/jupyterhub/jupyterhub/compare/0.1.0...0.2.0] - 2015-07-12

	Based on standalone traitlets instead of IPython.utils.traitlets

	multiple users in admin panel

	Fixes for usernames that require escaping

0.1 - 2015-03-07

First preview release

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	JupyterHub 0.7.0 documentation »

Contributors

Project Jupyter thanks the following people for their help and
contribution on JupyterHub:

	anderbubble

	betatim

	Carreau

	ckald

	cwaldbieser

	danielballen

	daradib

	datapolitan

	dblockow-d2dcrc

	dietmarw

	DominicFollettSmith

	dsblank

	ellisonbg

	evanlinde

	Fokko

	iamed18

	JamiesHQ

	jdavidheiser

	jhamrick

	josephtate

	kinuax

	KrishnaPG

	ksolan

	mbmilligan

	minrk

	mistercrunch

	Mistobaan

	mwmarkland

	nthiery

	ObiWahn

	ozancaglayan

	parente

	PeterDaveHello

	peterruppel

	rafael-ladislau

	rgbkrk

	robnagler

	ryanlovett

	Scrypy

	shreddd

	spoorthyv

	ssanderson

	takluyver

	temogen

	TimShawver

	Todd-Z-Li

	toobaz

	tsaeger

	vilhelmen

	willingc

	YannBrrd

	yuvipanda

	zoltan-fedor

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	JupyterHub 0.7.0 documentation »

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jupyterhub	

 	
 	
 jupyterhub.auth	

 	
 	
 jupyterhub.services.auth	

 	
 	
 jupyterhub.spawner	

 	
 	
 jupyterhub.user	

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	JupyterHub 0.7.0 documentation »

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | L
 | N
 | O
 | P
 | S
 | T
 | U
 | V

A

 	

 	add_system_user() (jupyterhub.auth.LocalAuthenticator method)

 	add_user() (jupyterhub.auth.Authenticator method)

 	

 	(jupyterhub.auth.LocalAuthenticator method)

 	

 	authenticate() (jupyterhub.auth.Authenticator method)

 	Authenticator (class in jupyterhub.auth)

C

 	

 	check_group_whitelist() (jupyterhub.auth.LocalAuthenticator method)

 	

 	check_hub_user() (jupyterhub.services.auth.HubAuthenticated method)

 	check_whitelist() (jupyterhub.auth.Authenticator method)

D

 	

 	delete_user() (jupyterhub.auth.Authenticator method)

E

 	

 	escaped_name (jupyterhub.user.User attribute)

F

 	

 	format_string() (jupyterhub.spawner.Spawner method)

G

 	

 	get_args() (jupyterhub.spawner.Spawner method)

 	get_authenticated_user() (jupyterhub.auth.Authenticator method)

 	get_current_user() (jupyterhub.services.auth.HubAuthenticated method)

 	

 	get_env() (jupyterhub.spawner.Spawner method)

 	get_handlers() (jupyterhub.auth.Authenticator method)

 	get_state() (jupyterhub.spawner.Spawner method)

 	get_user() (jupyterhub.services.auth.HubAuth method)

H

 	

 	HubAuth (class in jupyterhub.services.auth)

 	

 	HubAuthenticated (class in jupyterhub.services.auth)

J

 	

 	jupyterhub.auth (module)

 	jupyterhub.services.auth (module)

 	

 	jupyterhub.spawner (module)

 	jupyterhub.user (module)

L

 	

 	LocalAuthenticator (class in jupyterhub.auth)

 	LocalProcessSpawner (class in jupyterhub.spawner)

 	

 	login_url() (jupyterhub.auth.Authenticator method)

 	logout_url() (jupyterhub.auth.Authenticator method)

N

 	

 	name (jupyterhub.user.User attribute)

 	

 	normalize_username() (jupyterhub.auth.Authenticator method)

O

 	

 	options_from_form() (jupyterhub.spawner.Spawner method)

P

 	

 	PAMAuthenticator (class in jupyterhub.auth)

 	poll() (jupyterhub.spawner.Spawner method)

 	

 	post_spawn_stop() (jupyterhub.auth.Authenticator method)

 	pre_spawn_start() (jupyterhub.auth.Authenticator method)

S

 	

 	Server (class in jupyterhub.user)

 	server (jupyterhub.user.User attribute)

 	Spawner (class in jupyterhub.spawner)

 	

 	spawner (jupyterhub.user.User attribute)

 	start() (jupyterhub.spawner.Spawner method)

 	stop() (jupyterhub.spawner.Spawner method)

 	system_user_exists() (jupyterhub.auth.LocalAuthenticator static method)

T

 	

 	template_namespace() (jupyterhub.spawner.Spawner method)

U

 	

 	User (class in jupyterhub.user)

 	

 	user_for_cookie() (jupyterhub.services.auth.HubAuth method)

V

 	

 	validate_username() (jupyterhub.auth.Authenticator method)

 © Copyright 2016, Project Jupyter team.
 Created using Sphinx 1.4.8.

 _static/comment.png

_static/down.png

_images/spawn-form.png
Spawner options

Extra notebook CLI arguments

e.g. --debug

Environment variables (one per line)

YOURNAME=kaylee

2

_images/jhub-parts.png
Browser

[Configurable HTTP Proxy J

Juser/[name]/

Notebook

| User Database

Hub

/api/auth

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

